本题链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3261

题目描述

给定一个非负整数序列{a},初始长度为N。
有M个操作,有以下两种操作类型:
1、Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1。
2、Q l r x:询问操作,你需要找到一个位置p,满足l<=p<=r,使得:
a[p] xor a[p+1] xor ... xor a[N] xor x 最大,输出最大是多少。

输入

第一行包含两个整数 N  ,M,含义如问题描述所示。   
第二行包含 N个非负整数,表示初始的序列 A 。 
接下来 M行,每行描述一个操作,格式如题面所述。

输出

假设询问操作有 T个,则输出应该有 T行,每行一个整数表示询问的答案。

样例输入

5 5
2 6 4 3 6
A 1
Q 3 5 4
A 4
Q 5 7 0
Q 3 6 6
对于测试点 1-2,N,M<=5 。
对于测试点 3-7,N,M<=80000 。
对于测试点 8-10,N,M<=300000 。
其中测试点 1, 3, 5, 7, 9保证没有修改操作。
0<=a[i]<=10^7。

样例输出

4
5
6
 

题解:

在这道题目之前,我想读者需要一个前置知识便于理解。请看我的另一篇博客:https://www.cnblogs.com/xxzh/p/9178838.html
如果学会了这个知识的话,也就是知道了如何使用一颗01 Trie树
那么考虑这道题,很显然,现在我们需要维护一颗可持久化trie树。如果不清楚静态主席树原理的,请移步我的另一篇博客:https://www.cnblogs.com/xxzh/p/9158819.html
 
正式开始对这题讲解:
对于每次操作Q,它给的算式太鬼了,实际上应该化成max( (a[n] xor x)xor a[p-1] ) p∈[l,r];
 
对每个前置建立Trie,建立原理参考主席树博客。
在建树的过程中,很重要的一点就是我们每次插入的节点其实是原来a数组中的前缀。也就是说我们维护的是前缀和的前缀(有点绕读者仔细琢磨)
 
然后注意看算式,我们每次找的其实是p-1,注意是p-1而不是p。
也就是本来我们query查找的应该是l-1到r,由于是p-1我们现在查找的是l-2到r-1
当然,对于处理p-1我们也有方法,只需要在原来的数组a之前加一个0,这样的话就可以直接算l-1到r了
 
具体的操作还是贪心的从高位到低位建立Trie,查询的时候注意减一下
下面附上代码:
#include<bits/stdc++.h>
using namespace std; const int maxn=6e5+;
int n,m,sz;
int t[maxn<<][],sum[maxn<<],b[maxn],q[maxn];
inline int read(){
char ch=getchar();
int s=,f=;
while (!(ch>=''&&ch<='')) {if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<='') {s=(s<<)+(s<<)+ch-'';ch=getchar();}
return s*f;
}
int ins(int last,int val)
{
int res,k;
res=k=++sz;
for (int i=;i>=;i--)
{
sum[k]=sum[last]+;
t[k][]=t[last][];t[k][]=t[last][];
bool d=val&(<<i);
k=t[k][d]=++sz;last=t[last][d];
}
sum[k]=sum[last]+;
return res;
}
int query(int k1,int k2,int val)
{
int res=;
for (int i=;i>=;i--)
{
bool d=val&(<<i);
if (sum[t[k2][d^]]-sum[t[k1][d^]]>){
res|=(<<i);
k1=t[k1][d^];
k2=t[k2][d^];
}
else k1=t[k1][d],k2=t[k2][d];
}
return res;
}
int main()
{
n=read()+;m=read();
q[]=ins(q[],b[]);
for (int i=;i<=n;i++)
{
b[i]=b[i-]^read();//注意插入trie的是前缀和
q[i]=ins(q[i-],b[i]);
}
for (int i=;i<=m;i++)
{
char ch=getchar();
while (!(ch=='A'||ch=='Q')) ch=getchar();
if (ch=='A') {
++n;
b[n]=b[n-]^read();
q[n]=ins(q[n-],b[n]);
}
else {
int l=read(),r=read(),x=read();
printf("%d\n",query(q[l-],q[r],x^b[n]));
}
}
return ;
}

BZOJ3261 最大异或和 解题报告(可持久化Trie树)的更多相关文章

  1. [十二省联考2019] 异或粽子 解题报告 (可持久化Trie+堆)

    interlinkage: https://www.luogu.org/problemnew/show/P5283 description: solution: 显然有$O(n^2)$的做法,前缀和优 ...

  2. HDU4825:Xor Sum 解题报告(0/1 Trie树)

    Problem Description Zeus 和 Prometheus 做了一个游戏,Prometheus 给 Zeus 一个集合,集合中包含了N个正整数. 随后 Prometheus 将向 Ze ...

  3. 【洛谷5283】[十二省联考2019] 异或粽子(可持久化Trie树+堆)

    点此看题面 大致题意: 求前\(k\)大的区间异或和之和. 可持久化\(Trie\)树 之前做过一些可持久化\(Trie\)树题,结果说到底还是主席树. 终于,碰到一道真·可持久化\(Trie\)树的 ...

  4. BZOJ3261: 最大异或和(可持久化trie树)

    题意 题目链接 Sol 设\(sum[i]\)表示\(1 - i\)的异或和 首先把每个询问的\(x \oplus sum[n]\)就变成了询问前缀最大值 可持久化Trie树维护前缀xor,建树的时候 ...

  5. 【bzoj3261】【最大异或和】可持久化trie树+贪心

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=61705397 Description 给定一个非 ...

  6. 【bzoj3261】最大异或和 可持久化Trie树

    题目描述 给定一个非负整数序列 {a},初始长度为 N.       有M个操作,有以下两种操作类型:1.A x:添加操作,表示在序列末尾添加一个数 x,序列的长度 N+1.2.Q l r x:询问操 ...

  7. [BZOJ3261&BZOJ3166]可持久化trie树及其应用

    可持久化trie树 可持久化trie树现在想来是比较好理解的了,但却看了一个下午... 相当于对于每个状态建立一条链(或者说一棵trie),求解的时候只要让两个点按照相同的步子走然后看sum的大小关系 ...

  8. [十二省联考2019]异或粽子——可持久化trie树+堆

    题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出 ...

  9. bzoj 3261: 最大异或和 (可持久化trie树)

    3261: 最大异或和 Time Limit: 10 Sec  Memory Limit: 512 MB Description       给定一个非负整数序列 {a},初始长度为 N.       ...

随机推荐

  1. Spring+mybatis+struts框架整合的配置具体解释

    学了非常久的spring+mybatis+struts.一直都是单个的用他们,或者是两两组合用过,今天总算整合到一起了,配置起来有点麻烦.可是配置完一次之后.就轻松多了,那么框架整合配置具体解释例如以 ...

  2. WinCE C#程序,控制启动时仅仅能启动一个程序,使用相互排斥量来实现,该实现方法測试通过

    </pre><pre code_snippet_id="430174" snippet_file_name="blog_20140718_5_46349 ...

  3. linux 磁盘分区,主分区,扩展分区,逻辑分区以sata接口为例

     以sata接口(依据linux内核检測其顺序 sda,sdb...)为例, 1, 硬盘的限制,最多仅仅能设置4个分区(主分区+扩展分区),路径例如以下, /dev/sda1  /dev/sda2 ...

  4. java发送邮件带附件

    package com.smtp; import java.util.Vector; public class MailBean { private String to; // 收件人 private ...

  5. Wireshark默认不抓取本地包的解决方式

    事实上这个工具我已经用过非常多年了,还叫Ethereal的时候就在用. 今天因为实验须要,要抓一下在localhost间的包,结果发现获取不到.解决方法也非常easy,在cmd下输入: route a ...

  6. Spring整合Shiro从源代码探究机制

    首先从例如以下配置開始说起 ShiroDbFilterFactoryBean继承了ShiroFilterFactoryBean这个由jar提供的bean类, 而且它实现了InitializingBea ...

  7. uva_644暴力加字典树解法

    暴力 #include<iostream> #include<string.h> #include<cstdio> using namespace std; int ...

  8. ubuntu12.04下CKermit与开发板交互环境搭建

    CKermit蛮好的一个调试工具!就像在windows下的telnet,但是还是折腾了一下,现在看来,非常容易,其实我主要是在开发板为正常工作的情况下,以为是CKermit的问题,其实是我开发板开机设 ...

  9. layui(弹出层)

    首先引入文件 layui.css jquery.min.js layui.js 弹出层 data-method 后面的属性控制是什么弹窗,在js中写方法 <div class="sit ...

  10. vue项目input的placeholder根据用户的选择改变

    html部分 <el-input :placeholder="holder" v-model="searchKey"> <el-select ...