C. Vladik and Memorable Trip
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Vladik often travels by trains. He remembered some of his trips especially well and I would like to tell you about one of these trips:

Vladik is at initial train station, and now n people (including Vladik) want to get on the train. They are already lined up in some order, and for each of them the city code ai is known (the code of the city in which they are going to).

Train chief selects some number of disjoint segments of the original sequence of people (covering entire sequence by segments is not necessary). People who are in the same segment will be in the same train carriage. The segments are selected in such way that if at least one person travels to the city x, then all people who are going to city x should be in the same railway carriage. This means that they can’t belong to different segments. Note, that all people who travel to the city x, either go to it and in the same railway carriage, or do not go anywhere at all.

Comfort of a train trip with people on segment from position l to position r is equal to XOR of all distinct codes of cities for people on the segment from position l to position r. XOR operation also known as exclusive OR.

Total comfort of a train trip is equal to sum of comfort for each segment.

Help Vladik to know maximal possible total comfort.

Input

First line contains single integer n (1 ≤ n ≤ 5000) — number of people.

Second line contains n space-separated integers a1, a2, ..., an (0 ≤ ai ≤ 5000), where ai denotes code of the city to which i-th person is going.

Output

The output should contain a single integer — maximal possible total comfort.

Examples
input
6
4 4 2 5 2 3
output
14
input
9
5 1 3 1 5 2 4 2 5
output
9
Note

In the first test case best partition into segments is: [4, 4] [2, 5, 2] [3], answer is calculated as follows: 4 + (2 xor5) + 3 = 4 + 7 + 3 = 14

In the second test case best partition into segments is: 5 1 [3] 1 5 [2, 4, 2] 5, answer calculated as follows: 3 + (2 xor 4) = 3 + 6 = 9.

一开始妄图使用记忆化搜索! n 10^3 的时候基本就不是回溯法

从前到后 由前面的状态更新后面的(刷表法)

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 5005
#define MOD 1000000
#define INF 1000000009
#define eps 0.00000001
using namespace std; /*
dp[i]表示元素a[i]之前的最大comfort
*/
int dp[MAXN], l[MAXN], r[MAXN], a[MAXN], n;
bool been[MAXN];
int main()
{
scanf("%d", &n);
memset(l, INF, sizeof(l));
memset(r, -INF, sizeof(r));
for (int i = ; i < n; i++)
{
scanf("%d", &a[i]);
l[a[i]] = min(i, l[a[i]]);
r[a[i]] = max(i, r[a[i]]);
}
for (int i = ; i <= n; i++)
dp[i] = -INF;
dp[] = ;
for (int i = ; i < n; i++)
if (dp[i] != -INF)
{
dp[i + ] = max(dp[i + ], dp[i]);
int L = i, R = i, sum = ;
memset(been, false, sizeof(been));
for (int j = i; j <= R; ++j)
{
L = min(L, l[a[j]]);
R = max(R, r[a[j]]);
if (!been[a[j]])
{
sum ^= a[j];
been[a[j]] = true;
}
}
if (L == i)
dp[R + ] = max(dp[R + ], dp[i] + sum);
}
printf("%d\n", dp[n]);
return ;
}

C. Vladik and Memorable Trip DP的更多相关文章

  1. CodeForces - 811C Vladik and Memorable Trip(dp)

    C. Vladik and Memorable Trip time limit per test 2 seconds memory limit per test 256 megabytes input ...

  2. C. Vladik and Memorable Trip 解析(思維、DP)

    Codeforce 811 C. Vladik and Memorable Trip 解析(思維.DP) 今天我們來看看CF811C 題目連結 題目 給你一個數列,一個區段的數列的值是區段內所有相異數 ...

  3. Codeforces 811 C. Vladik and Memorable Trip

    C. Vladik and Memorable Trip   time limit per test 2 seconds memory limit per test 256 megabytes inp ...

  4. CodeForce-811C Vladik and Memorable Trip(动态规划)

    Vladik and Memorable Trip CodeForces - 811C 有一个长度为 n 的数列,其中第 i 项为 ai. 现在需要你从这个数列中选出一些互不相交的区间,并且保证整个数 ...

  5. Codeforces 811C Vladik and Memorable Trip (区间异或最大值) (线性DP)

    <题目链接> 题目大意: 给你n个数,现在让你选一些区间出来,对于每个区间中的每一种数,全部都只能出现在这个区间. 每个区间的价值为该区间不同的数的异或值之和,现在问你这n个数最大的价值是 ...

  6. 【dp】codeforces C. Vladik and Memorable Trip

    http://codeforces.com/contest/811/problem/C [题意] 给定一个自然数序列,在这个序列中找出几个不相交段,使得每个段的异或值之和相加最大. 段的异或值这样定义 ...

  7. codeforces 811 C. Vladik and Memorable Trip(dp)

    题目链接:http://codeforces.com/contest/811/problem/C 题意:给你n个数,现在让你选一些区间出来,对于每个区间中的每一种数,全部都要出现在这个区间. 每个区间 ...

  8. CodeForces 811C Vladik and Memorable Trip

    $dp$. 记录$dp[i]$表示以位置$i$为结尾的最大值. 枚举最后一段是哪一段,假设为$[j,i]$,那么可以用$max(dp[1]...dp[j-1]) + val[j][i]$去更新$dp[ ...

  9. CF811C Vladik and Memorable Trip

    思路: 令dp[i]表示前i个的最大舒适度.则如果区间[j, i](1 < j <= i)满足条件,有如下转移:dp[i] = max(dp[i], dp[j - 1] + cur).其中 ...

随机推荐

  1. MAC地址 初识

    MAC地址 即物理地址/硬件地址 地址长度为48位,6字节. 格式为:00-23-5A-15-99-42 一个网卡对应一个MAC地址(比如笔记本,有线网卡有一个MAC地址,无线网卡也有一个MAC地址) ...

  2. E20170804-mk

    epic n. 史诗; 叙事诗; 史诗般的作品; estimate vt. 估计,估算; 评价,评论; 估量,估价; Sprint  vi. 冲刺,全速短跑; n. 全速短跑; 速度或活动的突然爆发; ...

  3. js获取后台数据

    <!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...

  4. php 时间戳和时间的转换

    PHP的时间戳与具体时间转化 三个内置函数: time() //获取UNIX系统时间戳 mktime(hour,minute,second,month,day,year) //将指定时间转化为时间戳 ...

  5. poj1200Crazy Search(hash)

    题目大意   将一个字符串分成长度为N的字串.且不同的字符不会超过NC个.问总共有多少个不同的子串. /* 字符串hash O(n)枚举起点 然后O(1)查询子串hash值 然后O(n)找不一样的个数 ...

  6. 绑定树tree 的后台方法

    #region 获取部门列表树集合         /// <summary>         /// 获取部门列表树集合         /// </summary>     ...

  7. 349 Intersection of Two Arrays 两个数组的交集

    给定两个数组,写一个函数来计算它们的交集.例子: 给定 num1= [1, 2, 2, 1], nums2 = [2, 2], 返回 [2].提示:    每个在结果中的元素必定是唯一的.    我们 ...

  8. 笨拙而诡异的 Oracle

    有这样一段 SQL 代码: 通过 C# 获取查询结果:    SQL 代码中有两个参数,且都是字符串类型,以上的 C# 代码是生成 Oracle SQL 代码所需要的参数.运行结果如下:   居然发生 ...

  9. [ NOIP 2009 ] TG

    \(\\\) \(\#A\) \(Spy\) 给出两个长度均为\(N\)相同的样例串,建立第一个串各个字符向第二个串对应位置字符的映射,并用映射转换给出的长度为\(M\)第三个串,输入保证只有大写字符 ...

  10. 使用 Spring Social 连接社交网络

    Spring Social 框架是spring 提供社交平台的分享组件 https://www.ibm.com/developerworks/cn/java/j-lo-spring-social/