C. Vladik and Memorable Trip DP
2 seconds
256 megabytes
standard input
standard output
Vladik often travels by trains. He remembered some of his trips especially well and I would like to tell you about one of these trips:
Vladik is at initial train station, and now n people (including Vladik) want to get on the train. They are already lined up in some order, and for each of them the city code ai is known (the code of the city in which they are going to).
Train chief selects some number of disjoint segments of the original sequence of people (covering entire sequence by segments is not necessary). People who are in the same segment will be in the same train carriage. The segments are selected in such way that if at least one person travels to the city x, then all people who are going to city x should be in the same railway carriage. This means that they can’t belong to different segments. Note, that all people who travel to the city x, either go to it and in the same railway carriage, or do not go anywhere at all.
Comfort of a train trip with people on segment from position l to position r is equal to XOR of all distinct codes of cities for people on the segment from position l to position r. XOR operation also known as exclusive OR.
Total comfort of a train trip is equal to sum of comfort for each segment.
Help Vladik to know maximal possible total comfort.
First line contains single integer n (1 ≤ n ≤ 5000) — number of people.
Second line contains n space-separated integers a1, a2, ..., an (0 ≤ ai ≤ 5000), where ai denotes code of the city to which i-th person is going.
The output should contain a single integer — maximal possible total comfort.
6
4 4 2 5 2 3
14
9
5 1 3 1 5 2 4 2 5
9
In the first test case best partition into segments is: [4, 4] [2, 5, 2] [3], answer is calculated as follows: 4 + (2 xor5) + 3 = 4 + 7 + 3 = 14
In the second test case best partition into segments is: 5 1 [3] 1 5 [2, 4, 2] 5, answer calculated as follows: 3 + (2 xor 4) = 3 + 6 = 9.
一开始妄图使用记忆化搜索! n 10^3 的时候基本就不是回溯法
从前到后 由前面的状态更新后面的(刷表法)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 5005
#define MOD 1000000
#define INF 1000000009
#define eps 0.00000001
using namespace std; /*
dp[i]表示元素a[i]之前的最大comfort
*/
int dp[MAXN], l[MAXN], r[MAXN], a[MAXN], n;
bool been[MAXN];
int main()
{
scanf("%d", &n);
memset(l, INF, sizeof(l));
memset(r, -INF, sizeof(r));
for (int i = ; i < n; i++)
{
scanf("%d", &a[i]);
l[a[i]] = min(i, l[a[i]]);
r[a[i]] = max(i, r[a[i]]);
}
for (int i = ; i <= n; i++)
dp[i] = -INF;
dp[] = ;
for (int i = ; i < n; i++)
if (dp[i] != -INF)
{
dp[i + ] = max(dp[i + ], dp[i]);
int L = i, R = i, sum = ;
memset(been, false, sizeof(been));
for (int j = i; j <= R; ++j)
{
L = min(L, l[a[j]]);
R = max(R, r[a[j]]);
if (!been[a[j]])
{
sum ^= a[j];
been[a[j]] = true;
}
}
if (L == i)
dp[R + ] = max(dp[R + ], dp[i] + sum);
}
printf("%d\n", dp[n]);
return ;
}
C. Vladik and Memorable Trip DP的更多相关文章
- CodeForces - 811C Vladik and Memorable Trip(dp)
C. Vladik and Memorable Trip time limit per test 2 seconds memory limit per test 256 megabytes input ...
- C. Vladik and Memorable Trip 解析(思維、DP)
Codeforce 811 C. Vladik and Memorable Trip 解析(思維.DP) 今天我們來看看CF811C 題目連結 題目 給你一個數列,一個區段的數列的值是區段內所有相異數 ...
- Codeforces 811 C. Vladik and Memorable Trip
C. Vladik and Memorable Trip time limit per test 2 seconds memory limit per test 256 megabytes inp ...
- CodeForce-811C Vladik and Memorable Trip(动态规划)
Vladik and Memorable Trip CodeForces - 811C 有一个长度为 n 的数列,其中第 i 项为 ai. 现在需要你从这个数列中选出一些互不相交的区间,并且保证整个数 ...
- Codeforces 811C Vladik and Memorable Trip (区间异或最大值) (线性DP)
<题目链接> 题目大意: 给你n个数,现在让你选一些区间出来,对于每个区间中的每一种数,全部都只能出现在这个区间. 每个区间的价值为该区间不同的数的异或值之和,现在问你这n个数最大的价值是 ...
- 【dp】codeforces C. Vladik and Memorable Trip
http://codeforces.com/contest/811/problem/C [题意] 给定一个自然数序列,在这个序列中找出几个不相交段,使得每个段的异或值之和相加最大. 段的异或值这样定义 ...
- codeforces 811 C. Vladik and Memorable Trip(dp)
题目链接:http://codeforces.com/contest/811/problem/C 题意:给你n个数,现在让你选一些区间出来,对于每个区间中的每一种数,全部都要出现在这个区间. 每个区间 ...
- CodeForces 811C Vladik and Memorable Trip
$dp$. 记录$dp[i]$表示以位置$i$为结尾的最大值. 枚举最后一段是哪一段,假设为$[j,i]$,那么可以用$max(dp[1]...dp[j-1]) + val[j][i]$去更新$dp[ ...
- CF811C Vladik and Memorable Trip
思路: 令dp[i]表示前i个的最大舒适度.则如果区间[j, i](1 < j <= i)满足条件,有如下转移:dp[i] = max(dp[i], dp[j - 1] + cur).其中 ...
随机推荐
- RegisterAttached 两种绑定方式
RegisterAttached 含义:使用指定的属性名称.属性类型和所有者类型注册附加属性 绑定方式:C#绑定.WPF绑定 例:需求DataViewModel为DataView的VM层,在DataV ...
- Sorting It All Out 拓扑排序+确定点
这一道题的话 数据有一点问题 ........ 例如 不过 还是 能理解一下 试试吧 ......... A<B B<C C<A A<C B<A ...
- [转]Linux下paste命令详解
转自:http://blog.csdn.net/andy572633/article/details/7214126 paste单词意思是粘贴.该命令主要用来将多个文件的内容合并,与cut命令完成的功 ...
- 【转】 Java 集合系列07之 Stack详细介绍(源码解析)和使用示例
概要 学完Vector了之后,接下来我们开始学习Stack.Stack很简单,它继承于Vector.学习方式还是和之前一样,先对Stack有个整体认识,然后再学习它的源码:最后再通过实例来学会使用它. ...
- js基础---数据类型转换
js中数据类型: 简单数据类型: number:233,-34,0x23,023 string:"hello"或者'hello' boolean:true.false undefi ...
- 怎样用Fiddler模拟网络超时
转自:http://materliu.github.io/all/web/2014/04/28/fiddler-timeout.html 用fiddler模拟网络请求超时 用fiddler模拟网络 ...
- 【转载】HTTP 缓存的四种风味与缓存策略
原文地址:https://segmentfault.com/a/1190000006689795 HTTP Cache 通过网络获取内容既缓慢,成本又高:大的响应需要在客户端和服务器之间进行多次往返通 ...
- Android本地消息推送
项目介绍:cocos2dx跨平台游戏 项目需求:实现本地消息推送,需求①:定点推送:需求②:根据游戏内逻辑实现推送(比如玩家体力满时,需要计算后到点推送):需求③:清理后台程序或重启后依然能够实现本地 ...
- CAD绘制一个箭头(com接口)
1 2 3 4 5 6 7 8 //绘制一个箭头 axMxDrawX1.PathMoveToEx(1000, 300, 10, 10, 0); //设置路径下一点 axMxDrawX1.Path ...
- [转载]java中Date,SimpleDateFormat
一.Java中的日期概述: 日期在Java中是一块非常复杂的内容,对于一个日期在不同的语言国别环境中,日期的国际化,日期和时间之间的转换,日期的加减运算,日期的展示格式都是非常复杂的问题. 在Java ...