C. Vladik and Memorable Trip DP
2 seconds
256 megabytes
standard input
standard output
Vladik often travels by trains. He remembered some of his trips especially well and I would like to tell you about one of these trips:
Vladik is at initial train station, and now n people (including Vladik) want to get on the train. They are already lined up in some order, and for each of them the city code ai is known (the code of the city in which they are going to).
Train chief selects some number of disjoint segments of the original sequence of people (covering entire sequence by segments is not necessary). People who are in the same segment will be in the same train carriage. The segments are selected in such way that if at least one person travels to the city x, then all people who are going to city x should be in the same railway carriage. This means that they can’t belong to different segments. Note, that all people who travel to the city x, either go to it and in the same railway carriage, or do not go anywhere at all.
Comfort of a train trip with people on segment from position l to position r is equal to XOR of all distinct codes of cities for people on the segment from position l to position r. XOR operation also known as exclusive OR.
Total comfort of a train trip is equal to sum of comfort for each segment.
Help Vladik to know maximal possible total comfort.
First line contains single integer n (1 ≤ n ≤ 5000) — number of people.
Second line contains n space-separated integers a1, a2, ..., an (0 ≤ ai ≤ 5000), where ai denotes code of the city to which i-th person is going.
The output should contain a single integer — maximal possible total comfort.
6
4 4 2 5 2 3
14
9
5 1 3 1 5 2 4 2 5
9
In the first test case best partition into segments is: [4, 4] [2, 5, 2] [3], answer is calculated as follows: 4 + (2 xor5) + 3 = 4 + 7 + 3 = 14
In the second test case best partition into segments is: 5 1 [3] 1 5 [2, 4, 2] 5, answer calculated as follows: 3 + (2 xor 4) = 3 + 6 = 9.
一开始妄图使用记忆化搜索! n 10^3 的时候基本就不是回溯法
从前到后 由前面的状态更新后面的(刷表法)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 5005
#define MOD 1000000
#define INF 1000000009
#define eps 0.00000001
using namespace std; /*
dp[i]表示元素a[i]之前的最大comfort
*/
int dp[MAXN], l[MAXN], r[MAXN], a[MAXN], n;
bool been[MAXN];
int main()
{
scanf("%d", &n);
memset(l, INF, sizeof(l));
memset(r, -INF, sizeof(r));
for (int i = ; i < n; i++)
{
scanf("%d", &a[i]);
l[a[i]] = min(i, l[a[i]]);
r[a[i]] = max(i, r[a[i]]);
}
for (int i = ; i <= n; i++)
dp[i] = -INF;
dp[] = ;
for (int i = ; i < n; i++)
if (dp[i] != -INF)
{
dp[i + ] = max(dp[i + ], dp[i]);
int L = i, R = i, sum = ;
memset(been, false, sizeof(been));
for (int j = i; j <= R; ++j)
{
L = min(L, l[a[j]]);
R = max(R, r[a[j]]);
if (!been[a[j]])
{
sum ^= a[j];
been[a[j]] = true;
}
}
if (L == i)
dp[R + ] = max(dp[R + ], dp[i] + sum);
}
printf("%d\n", dp[n]);
return ;
}
C. Vladik and Memorable Trip DP的更多相关文章
- CodeForces - 811C Vladik and Memorable Trip(dp)
C. Vladik and Memorable Trip time limit per test 2 seconds memory limit per test 256 megabytes input ...
- C. Vladik and Memorable Trip 解析(思維、DP)
Codeforce 811 C. Vladik and Memorable Trip 解析(思維.DP) 今天我們來看看CF811C 題目連結 題目 給你一個數列,一個區段的數列的值是區段內所有相異數 ...
- Codeforces 811 C. Vladik and Memorable Trip
C. Vladik and Memorable Trip time limit per test 2 seconds memory limit per test 256 megabytes inp ...
- CodeForce-811C Vladik and Memorable Trip(动态规划)
Vladik and Memorable Trip CodeForces - 811C 有一个长度为 n 的数列,其中第 i 项为 ai. 现在需要你从这个数列中选出一些互不相交的区间,并且保证整个数 ...
- Codeforces 811C Vladik and Memorable Trip (区间异或最大值) (线性DP)
<题目链接> 题目大意: 给你n个数,现在让你选一些区间出来,对于每个区间中的每一种数,全部都只能出现在这个区间. 每个区间的价值为该区间不同的数的异或值之和,现在问你这n个数最大的价值是 ...
- 【dp】codeforces C. Vladik and Memorable Trip
http://codeforces.com/contest/811/problem/C [题意] 给定一个自然数序列,在这个序列中找出几个不相交段,使得每个段的异或值之和相加最大. 段的异或值这样定义 ...
- codeforces 811 C. Vladik and Memorable Trip(dp)
题目链接:http://codeforces.com/contest/811/problem/C 题意:给你n个数,现在让你选一些区间出来,对于每个区间中的每一种数,全部都要出现在这个区间. 每个区间 ...
- CodeForces 811C Vladik and Memorable Trip
$dp$. 记录$dp[i]$表示以位置$i$为结尾的最大值. 枚举最后一段是哪一段,假设为$[j,i]$,那么可以用$max(dp[1]...dp[j-1]) + val[j][i]$去更新$dp[ ...
- CF811C Vladik and Memorable Trip
思路: 令dp[i]表示前i个的最大舒适度.则如果区间[j, i](1 < j <= i)满足条件,有如下转移:dp[i] = max(dp[i], dp[j - 1] + cur).其中 ...
随机推荐
- css link的事件与顺序
创建: 2017/10/26 link:连接平常的状态 visited:连接被访问过之后 hover:鼠标放到连接上的时候 active:连接被按下的时候
- [App Store Connect帮助]二、 添加、编辑和删除用户(4)更改用户的 App 访问权限
您可以限制具有“App 管理”.“客户支持”.“开发者”.“营销”或“销售”职能的用户(均不具有“访问报告”职能)拥有哪些 App 的访问权限.如果您不更改他们的用户 App 访问权限,他们将默认拥有 ...
- [ SCOI 2007 ] Perm
\(\\\) \(Description\) 给出只包括多个\(0\text~ 9\)的数字集,求有多少个本质不同的全排列,使得组成的数字能够整除\(M\). \(|S|\in [1,10]\),\( ...
- html5——颜色
CSS2 1.opacity,可以设置透明度,但是父盒子设置了透明度会影响子盒子 CC3 1.transparent属性,但是不可改变透明值 2.rgba():r--red g--green b--b ...
- 数据结构应用实例#栈&单链表#简易计算器
修改BUG的时候一不小心BUG越修越多,鉴于维护程序并不是学习数据结构的初衷,我已经果断的弃坑了!! 以下内容再不更新,Github上的代码直接无法正常编译运行.... 参考参考就好,学习到栈的作用就 ...
- 易买网之smartupload实现文件上传
经过俩个星期的奋斗,易买网项目完工.在之前,实现图片的上传,走过许多弯路,原来是好多基础的知识忘记了,没把smartupload文件包添加组件jar包至WEB-INF/lib包中,在此特别重视,做下文 ...
- Linux Shell 小知识
${} ——变量替换 通常 $var 与 ${var} 没有区别,但是用 ${} 会比较精确的界定变量名称的范围. name='Ace' echo "result1: my name is ...
- (转) Hibernate检索方式概述
http://blog.csdn.net/yerenyuan_pku/article/details/70554816 Hibernate检索方式概述 我们在对数据库的操作中,最常用的是select, ...
- (转)Hibernate关联映射——一对多(多对一)
http://blog.csdn.net/yerenyuan_pku/article/details/70152173 Hibernate关联映射——一对多(多对一) 我们以客户(Customer)与 ...
- ubuntu 更改终端颜色
1.$ sudo gedit .bashrc 2.PS1="\[\033[1;36;01m\]\u\[\033[00m\]\[\033[1;34;01m\]@\[\033[00m\]\[\0 ...