C. Vladik and Memorable Trip DP
2 seconds
256 megabytes
standard input
standard output
Vladik often travels by trains. He remembered some of his trips especially well and I would like to tell you about one of these trips:
Vladik is at initial train station, and now n people (including Vladik) want to get on the train. They are already lined up in some order, and for each of them the city code ai is known (the code of the city in which they are going to).
Train chief selects some number of disjoint segments of the original sequence of people (covering entire sequence by segments is not necessary). People who are in the same segment will be in the same train carriage. The segments are selected in such way that if at least one person travels to the city x, then all people who are going to city x should be in the same railway carriage. This means that they can’t belong to different segments. Note, that all people who travel to the city x, either go to it and in the same railway carriage, or do not go anywhere at all.
Comfort of a train trip with people on segment from position l to position r is equal to XOR of all distinct codes of cities for people on the segment from position l to position r. XOR operation also known as exclusive OR.
Total comfort of a train trip is equal to sum of comfort for each segment.
Help Vladik to know maximal possible total comfort.
First line contains single integer n (1 ≤ n ≤ 5000) — number of people.
Second line contains n space-separated integers a1, a2, ..., an (0 ≤ ai ≤ 5000), where ai denotes code of the city to which i-th person is going.
The output should contain a single integer — maximal possible total comfort.
6
4 4 2 5 2 3
14
9
5 1 3 1 5 2 4 2 5
9
In the first test case best partition into segments is: [4, 4] [2, 5, 2] [3], answer is calculated as follows: 4 + (2 xor5) + 3 = 4 + 7 + 3 = 14
In the second test case best partition into segments is: 5 1 [3] 1 5 [2, 4, 2] 5, answer calculated as follows: 3 + (2 xor 4) = 3 + 6 = 9.
一开始妄图使用记忆化搜索! n 10^3 的时候基本就不是回溯法
从前到后 由前面的状态更新后面的(刷表法)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 5005
#define MOD 1000000
#define INF 1000000009
#define eps 0.00000001
using namespace std; /*
dp[i]表示元素a[i]之前的最大comfort
*/
int dp[MAXN], l[MAXN], r[MAXN], a[MAXN], n;
bool been[MAXN];
int main()
{
scanf("%d", &n);
memset(l, INF, sizeof(l));
memset(r, -INF, sizeof(r));
for (int i = ; i < n; i++)
{
scanf("%d", &a[i]);
l[a[i]] = min(i, l[a[i]]);
r[a[i]] = max(i, r[a[i]]);
}
for (int i = ; i <= n; i++)
dp[i] = -INF;
dp[] = ;
for (int i = ; i < n; i++)
if (dp[i] != -INF)
{
dp[i + ] = max(dp[i + ], dp[i]);
int L = i, R = i, sum = ;
memset(been, false, sizeof(been));
for (int j = i; j <= R; ++j)
{
L = min(L, l[a[j]]);
R = max(R, r[a[j]]);
if (!been[a[j]])
{
sum ^= a[j];
been[a[j]] = true;
}
}
if (L == i)
dp[R + ] = max(dp[R + ], dp[i] + sum);
}
printf("%d\n", dp[n]);
return ;
}
C. Vladik and Memorable Trip DP的更多相关文章
- CodeForces - 811C Vladik and Memorable Trip(dp)
C. Vladik and Memorable Trip time limit per test 2 seconds memory limit per test 256 megabytes input ...
- C. Vladik and Memorable Trip 解析(思維、DP)
Codeforce 811 C. Vladik and Memorable Trip 解析(思維.DP) 今天我們來看看CF811C 題目連結 題目 給你一個數列,一個區段的數列的值是區段內所有相異數 ...
- Codeforces 811 C. Vladik and Memorable Trip
C. Vladik and Memorable Trip time limit per test 2 seconds memory limit per test 256 megabytes inp ...
- CodeForce-811C Vladik and Memorable Trip(动态规划)
Vladik and Memorable Trip CodeForces - 811C 有一个长度为 n 的数列,其中第 i 项为 ai. 现在需要你从这个数列中选出一些互不相交的区间,并且保证整个数 ...
- Codeforces 811C Vladik and Memorable Trip (区间异或最大值) (线性DP)
<题目链接> 题目大意: 给你n个数,现在让你选一些区间出来,对于每个区间中的每一种数,全部都只能出现在这个区间. 每个区间的价值为该区间不同的数的异或值之和,现在问你这n个数最大的价值是 ...
- 【dp】codeforces C. Vladik and Memorable Trip
http://codeforces.com/contest/811/problem/C [题意] 给定一个自然数序列,在这个序列中找出几个不相交段,使得每个段的异或值之和相加最大. 段的异或值这样定义 ...
- codeforces 811 C. Vladik and Memorable Trip(dp)
题目链接:http://codeforces.com/contest/811/problem/C 题意:给你n个数,现在让你选一些区间出来,对于每个区间中的每一种数,全部都要出现在这个区间. 每个区间 ...
- CodeForces 811C Vladik and Memorable Trip
$dp$. 记录$dp[i]$表示以位置$i$为结尾的最大值. 枚举最后一段是哪一段,假设为$[j,i]$,那么可以用$max(dp[1]...dp[j-1]) + val[j][i]$去更新$dp[ ...
- CF811C Vladik and Memorable Trip
思路: 令dp[i]表示前i个的最大舒适度.则如果区间[j, i](1 < j <= i)满足条件,有如下转移:dp[i] = max(dp[i], dp[j - 1] + cur).其中 ...
随机推荐
- E20170924-hm
literal adj. 照字面的; 原义的; 逐字的; 平实的,避免夸张; n. [印] 错排,文字上的错误; parameter n. [数] 参数; <物><数&g ...
- E20170916-hm
sassy adj. 无礼的; 漂亮的; <非正,美> <贬>粗鲁的; <褒>时髦的; digest vt. 消化; 整理; compressor n. 压气 ...
- Android内存管理(9)*MAT:Heap Dump,Shallow Heap,Retained Heap,Dominating Tree,GC Roots等的含义
原文: http://help.eclipse.org/mars/index.jsp?topic=%2Forg.eclipse.mat.ui.help%2Fconcepts%2Fheapdump.ht ...
- 解决:efi usb device has been blocked by the current security policy
解决:efi usb device has been blocked by the current security policy 问题描述:U盘装系统或者其他操作时,是因为BIOS安全策略,出现上述 ...
- 客户端通过base64上传bitmap服务器
首先致谢:http://www.jb51.net/article/129743.htm 咱们不是代码的生产者,只是代码的搬运工. 场景描述:Android客户端需要上传头像等图片到服务器,经双方协商决 ...
- 使用whIle循环语句和变量打印九九乘法表
-设置i变量declare @i int --设置j变量declare @j int --设置乘法表变量declare @chengfabiao varchar(1000)--给i,j,@chengf ...
- Find the build UUID in a Crash Report
1) Find the build UUID in a Crash Report The first line in the "Binary Images:" section of ...
- PHP 设计模式--序言
面向对象是PHP5之后增加的功能,是PHP走向现代语言的一个标志. 在过程式设计时代,PHP以学习成本低.入门快的特点赢得很多WEB开发者的青睐,但同时也限制了PHP的发展. 借鉴Java和C++之后 ...
- 【转载】使用IntelliJ IDEA 配置Maven(入门)
1. 下载Maven 官方地址:http://maven.apache.org/download.cgi 解压并新建一个本地仓库文件夹 2.配置本地仓库路径 3.配置maven环境变量 ...
- Echarts特效散点图全解
mytextStyle={ color:"#333", //文字颜色 fontStyle:"normal", //italic斜体 oblique倾斜 font ...