C# 优先级队列

前6行是优先队列,后6行是C#原生的queue
Min Heap Priority Queue
The above code is not really a true Priority Queue as it does not allow duplicate keys; also, the SortedList on which it is based does not have O(log n) insertions and removals for random data as a true Priority Queue does. The below code implements a true Min Heap Priority Queue:
namespace PriorityQ {
using KeyT = UInt32;
using System;
using System.Collections.Generic;
using System.Linq;
class Tuple<K, V> { // for DotNet 3.5 without Tuple's
public K Item1; public V Item2;
public Tuple(K k, V v) { Item1 = k; Item2 = v; }
public override string ToString() {
return "(" + Item1.ToString() + ", " + Item2.ToString() + ")";
}
}
class MinHeapPQ<V> {
private struct HeapEntry {
public KeyT k; public V v;
public HeapEntry(KeyT k, V v) { this.k = k; this.v = v; }
}
private List<HeapEntry> pq;
private MinHeapPQ() { this.pq = new List<HeapEntry>(); }
; } }
private int sz {
get {
var cnt = pq.Count;
) ? : cnt - ;
}
}
private Tuple<KeyT, V> pkmn {
get {
) return null;
else {
];
return new Tuple<KeyT, V>(mn.k, mn.v);
}
}
}
private void psh(KeyT k, V v) { // add extra very high item if none
) pq.Add(new HeapEntry(UInt32.MaxValue, v));
]); // copy bottom item...
; ni > ; i >>= , ni >>= ) {
];
] = t; else break;
}
pq[i - ] = new HeapEntry(k, v);
}
private void siftdown(KeyT k, V v, int ndx) {
; var i = ndx;
; ni < cnt; ni = ni + ni + ) {
].k;
var nk = k;
if (k > lk) { i = ni; nk = lk; }
; i = ni; }
if (i != oi) pq[oi] = pq[i]; else break;
}
pq[i] = new HeapEntry(k, v);
}
private void rplcmin(KeyT k, V v) {
) siftdown(k, v, );
}
private void dltmin() {
;
) pq.Clear();
else {
var lkv = pq[lsti];
pq.RemoveAt(lsti); siftdown(lkv.k, lkv.v, );
}
}
private void reheap(int i) {
;
if (lfti < sz) {
; reheap(lfti); reheap(rghti);
var ckv = pq[i]; siftdown(ckv.k, ckv.v, i);
}
}
private void bld(IEnumerable<Tuple<KeyT, V>> sq) {
var sqm = from e in sq
select new HeapEntry(e.Item1, e.Item2);
pq = sqm.ToList<HeapEntry>();
var sz = pq.Count;
) {
];
pq.Add(new HeapEntry(KeyT.MaxValue, lkv.v));
reheap();
}
}
private IEnumerable<Tuple<KeyT, V>> sq() {
return from e in pq
where e.k != KeyT.MaxValue
select new Tuple<KeyT, V>(e.k, e.v); }
private void adj(Func<KeyT, V, Tuple<KeyT, V>> f) {
;
; i < cnt; ++i) {
var e = pq[i];
var r = f(e.k, e.v);
pq[i] = new HeapEntry(r.Item1, r.Item2);
}
reheap();
}
public static MinHeapPQ<V> empty { get { return new MinHeapPQ<V>(); } }
public static bool isEmpty(MinHeapPQ<V> pq) { return pq.mt; }
public static int size(MinHeapPQ<V> pq) { return pq.sz; }
public static Tuple<KeyT, V> peekMin(MinHeapPQ<V> pq) { return pq.pkmn; }
public static MinHeapPQ<V> push(KeyT k, V v, MinHeapPQ<V> pq) {
pq.psh(k, v); return pq; }
public static MinHeapPQ<V> replaceMin(KeyT k, V v, MinHeapPQ<V> pq) {
pq.rplcmin(k, v); return pq; }
public static MinHeapPQ<V> deleteMin(MinHeapPQ<V> pq) { pq.dltmin(); return pq; }
public static MinHeapPQ<V> merge(MinHeapPQ<V> pq1, MinHeapPQ<V> pq2) {
return fromSeq(pq1.sq().Concat(pq2.sq())); }
public static MinHeapPQ<V> adjust(Func<KeyT, V, Tuple<KeyT, V>> f, MinHeapPQ<V> pq) {
pq.adj(f); return pq; }
public static MinHeapPQ<V> fromSeq(IEnumerable<Tuple<KeyT, V>> sq) {
var pq = new MinHeapPQ<V>(); pq.bld(sq); return pq; }
public static Tuple<Tuple<KeyT, V>, MinHeapPQ<V>> popMin(MinHeapPQ<V> pq) {
var rslt = pq.pkmn; if (rslt == null) return null;
pq.dltmin(); return new Tuple<Tuple<KeyT, V>, MinHeapPQ<V>>(rslt, pq); }
public static IEnumerable<Tuple<KeyT, V>> toSeq(MinHeapPQ<V> pq) {
for (; !pq.mt; pq.dltmin()) yield return pq.pkmn; }
public static IEnumerable<Tuple<KeyT, V>> sort(IEnumerable<Tuple<KeyT, V>> sq) {
return toSeq(fromSeq(sq)); }
}
}
The above class code offers a full set of static methods and properties:
1. "empty" to create a new empty queue, 2. "isEmpty" to test if a queue is empty, 3. "size" to get the number of elements in the queue, 4. "peekMin" to retrieve the lowest priority key/value pair entry as a Tuple (possibly null for empty queues), 5. "push" to insert an entry, 6. "deleteMin" to remove the lowest priority entry, 7. "replaceMin" to replace the lowest priority and adjust the queue according to the value (faster than a "deleteMin" followed by a "push"), 8. "adjust" to apply a function to every key/value entry pair and reheapify the result, 9. "merge" to merge two queues into a single reheapified result, 10. "fromSeq" to build a queue from a sequence of key/value pair tuples, 11. "popMin" which is a convenience function combining a "peekMin" with a "deleteMin", returning null if the queue is empty and a tuple of the result otherwise, 12. "toSeq" to output an ordered sequence of the queue contents as Tuple's of the key/value pairs, and 13. "sort" which is a convenience function combining "fromSeq" followed by "toSeq".
The first four are all O(1) and the remainder O(log n) except "adjust" and "fromSeq" are O(n), "merge" is O(m + n) where m and n are the sizes of the two queues, and "toSeq" and "sort" are O(n log n); "replaceMin" is still O(log n) but faster than a "deleteMin" followed by a "push" by a constant factor.
Note that the Key type "KeyT" is not generic in order to give better comparison efficiency than using generic comparison using the IComparible interface but can be changed to different numeric types using the "using KeyT = ???" type alias.
The above code can be tested as per the page specification by the following code:
static void Main(string[] args) {
Tuple<uint, string>[] ins = { new Tuple<uint,string>(3u, "Clear drains"),
new Tuple<uint,string>(4u, "Feed cat"),
new Tuple<uint,string>(5u, "Make tea"),
new Tuple<uint,string>(1u, "Solve RC tasks"),
new Tuple<uint,string>(2u, "Tax return") };
var spq = ins.Aggregate(MinHeapPQ<string>.empty, (pq, t) => MinHeapPQ<string>.push(t.Item1, t.Item2, pq));
foreach (var e in MinHeapPQ<string>.toSeq(spq)) Console.WriteLine(e); Console.WriteLine();
foreach (var e in MinHeapPQ<string>.sort(ins)) Console.WriteLine(e); Console.WriteLine();
var npq = MinHeapPQ<string>.fromSeq(ins);
foreach (var e in MinHeapPQ<string>.toSeq(MinHeapPQ<string>.merge(npq, npq)))
Console.WriteLine(e); Console.WriteLine();
var npq = MinHeapPQ<string>.fromSeq(ins);
foreach (var e in MinHeapPQ<string>.toSeq(MinHeapPQ<string>.merge(npq, npq)))
Console.WriteLine(e);
foreach (var e in MinHeapPQ<string>.toSeq(MinHeapPQ<string>.adjust((k, v) => new Tuple<uint,string>(6u - k, v), npq)))
Console.WriteLine(e); Console.WriteLine();
}
It tests building the queue the slow way using repeated "push"'s - O(n log n), the faster "fromSeq" (included in the "sort") - O(n), and also tests the "merge" and "adjust" methods.
The output of the above test is as follows:
- Output:
(1, Solve RC tasks) (2, Tax return) (3, Clear drains) (4, Feed cat) (5, Make tea) (1, Solve RC tasks) (2, Tax return) (3, Clear drains) (4, Feed cat) (5, Make tea) (1, Solve RC tasks) (1, Solve RC tasks) (2, Tax return) (2, Tax return) (3, Clear drains) (3, Clear drains) (4, Feed cat) (4, Feed cat) (5, Make tea) (5, Make tea) (1, Make tea) (2, Feed cat) (3, Clear drains) (4, Tax return) (5, Solve RC tasks) 再贴上自己写的一点扩展方法
public static class MinHeapPQEX
{
/// <summary>
/// 创建一个空的优先级队列O(1)
/// </summary>
/// <typeparam name="T"></typeparam>
/// <returns></returns>
public static PriorityQueue<T> CreatPriorityQueue<T>()
{
return PriorityQueue<T>.empty;
}
/// <summary>
/// 进队 O(log n)
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="pq"></param>
/// <param name="priority"></param>
/// <param name="model"></param>
public static void Enqueue<T>(this PriorityQueue<T> pq, UInt32 priority, T model)
{
PriorityQueue<T>.push(priority, model, pq);
}
/// <summary>
/// 出队 peek+delete
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="pq"></param>
/// <returns></returns>
public static T Dequeue<T>(this PriorityQueue<T> pq)
{
return PriorityQueue<T>.popMin(pq).Item1.Item2;
}
/// <summary>
/// 检索,但不出队 O(1)
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="pq"></param>
/// <returns></returns>
public static T Peek<T>(this PriorityQueue<T> pq)
{
return PriorityQueue<T>.peekMin(pq).Item2;
}
/// <summary>
/// 判断队列是否为空 O(1)
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="pq"></param>
/// <returns></returns>
public static bool IsEmpty<T>(this PriorityQueue<T> pq)
{
return PriorityQueue<T>.isEmpty(pq);
}
/// <summary>
/// 统计 O(1)
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="pq"></param>
/// <returns></returns>
public static int Count<T>(this PriorityQueue<T> pq)
{
return PriorityQueue<T>.size(pq);
}
/// <summary>
/// 删除即将出队的元素
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="pq"></param>
public static void Delete<T>(this PriorityQueue<T> pq)
{
PriorityQueue<T>.deleteMin(pq);
}
}
C# 优先级队列的更多相关文章
- 体验Rabbitmq强大的【优先级队列】之轻松面对现实业务场景
说到队列的话,大家一定不会陌生,但是扯到优先级队列的话,还是有一部分同学是不清楚的,可能是不知道怎么去实现吧,其实呢,,,这东西已 经烂大街了...很简单,用“堆”去实现的,在我们系统中有一个订单催付 ...
- Java中的队列Queue,优先级队列PriorityQueue
队列Queue 在java5中新增加了java.util.Queue接口,用以支持队列的常见操作.该接口扩展了java.util.Collection接口. Queue使用时要尽量避免Collecti ...
- 如何基于RabbitMQ实现优先级队列
概述 由于种种原因,RabbitMQ到目前为止,官方还没有实现优先级队列,只实现了Consumer的优先级处理. 但是,迫于种种原因,应用层面上又需要优先级队列,因此需求来了:如何为RabbitMQ加 ...
- ACM/ICPC 之 优先级队列+设置IO缓存区(TSH OJ-Schedule(任务调度))
一个裸的优先级队列(最大堆)题,但也有其他普通队列的做法.这道题我做了两天,结果发现是输入输出太过频繁,一直只能A掉55%的数据,其他都是TLE,如果将输入输出的数据放入缓存区,然后满区输出,可以将I ...
- java中PriorityQueue优先级队列使用方法
优先级队列是不同于先进先出队列的另一种队列.每次从队列中取出的是具有最高优先权的元素. PriorityQueue是从JDK1.5开始提供的新的数据结构接口. 如果不提供Comparator的话,优先 ...
- stl的优先级队列
#include <iostream> #include <vector> #include <queue> using namespace std; class ...
- 【python cookbook】【数据结构与算法】5.实现优先级队列
问题:要实现一个队列,它能够以给定的优先级对元素排序,且每次pop操作时都会返回优先级最高的那个元素: 解决方案:采用heapq模块实现一个简单的优先级队列 # example.py # # Exam ...
- POJ 2227 The Wedding Juicer (优先级队列+bfs+dfs)
思路描述来自:http://hi.baidu.com/perfectcai_/item/701f2efa460cedcb0dd1c820也可以参考黑书P89的积水. 题意:Farmer John有一个 ...
- 《Java数据结构与算法》笔记-CH4-6优先级队列
/** * 优先级队列 * 效率:插入O(n),删除O(1).第12章介绍如何通过堆来改进insert时间 */ class PriorityQueue { private int maxSize; ...
- STL学习系列七:优先级队列priority_queue容器
1.简介 最大值优先级队列.最小值优先级队列 优先级队列适配器 STL priority_queue 用来开发一些特殊的应用,请对stl的类库,多做扩展性学习 这里给个例子: #include< ...
随机推荐
- Android中动态设置GridView的列数、列宽和行高
在使用GridView时我们知道,列数是可以通过设计时的属性来设置的,列的宽度则是根据列数和GridView的宽度计算出来的.但是有些时候我们想实现列数是动态改变的效果,即列的宽度保持某个值,列的数量 ...
- $.ajax 请求 拦截器 重定向 无效 解决办法
在ajax 异步请求下 拦截器过滤器中使用 重定向 页面响应无效 我这里用的是springboot框架,用拦截器实现 对请求的拦截 ,session超时直接跳转到login.html页面. 后台代码: ...
- springmvc-Controller类的方法返回String不跳转
买了本书,打算系统的学习一下spring,做了一下书中的练习,出现了一个问题,Controller类的方法返回String,但是页面不跳转,而是直接把字符串的内容显示到页面上. @RequestMap ...
- 【iOS】怎样推断文本文件的字符编码格式
整体思路: 遍历全部的字符编码.能正确读取输出转换的就是文本文件的编码格式. 代码例如以下: // // main.m // 检測文本字符编码格式的小技巧 // // Created by 杜子兮 ( ...
- [Angular] Content Projection with ng-content
For example there is tow form compoennts on the page, and what we want to do is reusing the form com ...
- freemarker自己定义标签(一)
freemarker自己定义标签 1.自己定义标签说明 宏变量存储模板片段能够被用作自己定义指令macro 2.演示样例说明 <html> <head> <meta ht ...
- SQL表的默认常用数据类型
分类 字段类型 描述 整数 bit 0或1的整型数字 int 从-2^31(-2,147,483,648)到2^31-1(2,147,483,647)的整型数字 smallint 从-2^15(-32 ...
- 【t003】string
Time Limit: 1 second Memory Limit: 50 MB [问题描述] 设有字符串X,我们称在X的头尾及中间插入任意多个空格后构成的新字符串为X的扩展串,如字符串X为" ...
- springboot内置tomcat验证授权回调页面域名
springboot内置tomcat验证公众号授权回调页面域名 解决方法: 网上下载一个tomcat,在server.xml文件中修改端口为springboot内置tomcat的端口号,复制验证文件到 ...
- VS2008智能提示解决办法
最近在VS2008的代码编辑环境中,发现定义了一个类后,然后用类对象点不出对象的属性和方法,于是在网上参考一些资料. 具体步骤如下: 一.开始->Microsoft Visual Studio ...