C# 优先级队列
前6行是优先队列,后6行是C#原生的queue
Min Heap Priority Queue
The above code is not really a true Priority Queue as it does not allow duplicate keys; also, the SortedList on which it is based does not have O(log n) insertions and removals for random data as a true Priority Queue does. The below code implements a true Min Heap Priority Queue:
namespace PriorityQ { using KeyT = UInt32; using System; using System.Collections.Generic; using System.Linq; class Tuple<K, V> { // for DotNet 3.5 without Tuple's public K Item1; public V Item2; public Tuple(K k, V v) { Item1 = k; Item2 = v; } public override string ToString() { return "(" + Item1.ToString() + ", " + Item2.ToString() + ")"; } } class MinHeapPQ<V> { private struct HeapEntry { public KeyT k; public V v; public HeapEntry(KeyT k, V v) { this.k = k; this.v = v; } } private List<HeapEntry> pq; private MinHeapPQ() { this.pq = new List<HeapEntry>(); } ; } } private int sz { get { var cnt = pq.Count; ) ? : cnt - ; } } private Tuple<KeyT, V> pkmn { get { ) return null; else { ]; return new Tuple<KeyT, V>(mn.k, mn.v); } } } private void psh(KeyT k, V v) { // add extra very high item if none ) pq.Add(new HeapEntry(UInt32.MaxValue, v)); ]); // copy bottom item... ; ni > ; i >>= , ni >>= ) { ]; ] = t; else break; } pq[i - ] = new HeapEntry(k, v); } private void siftdown(KeyT k, V v, int ndx) { ; var i = ndx; ; ni < cnt; ni = ni + ni + ) { ].k; var nk = k; if (k > lk) { i = ni; nk = lk; } ; i = ni; } if (i != oi) pq[oi] = pq[i]; else break; } pq[i] = new HeapEntry(k, v); } private void rplcmin(KeyT k, V v) { ) siftdown(k, v, ); } private void dltmin() { ; ) pq.Clear(); else { var lkv = pq[lsti]; pq.RemoveAt(lsti); siftdown(lkv.k, lkv.v, ); } } private void reheap(int i) { ; if (lfti < sz) { ; reheap(lfti); reheap(rghti); var ckv = pq[i]; siftdown(ckv.k, ckv.v, i); } } private void bld(IEnumerable<Tuple<KeyT, V>> sq) { var sqm = from e in sq select new HeapEntry(e.Item1, e.Item2); pq = sqm.ToList<HeapEntry>(); var sz = pq.Count; ) { ]; pq.Add(new HeapEntry(KeyT.MaxValue, lkv.v)); reheap(); } } private IEnumerable<Tuple<KeyT, V>> sq() { return from e in pq where e.k != KeyT.MaxValue select new Tuple<KeyT, V>(e.k, e.v); } private void adj(Func<KeyT, V, Tuple<KeyT, V>> f) { ; ; i < cnt; ++i) { var e = pq[i]; var r = f(e.k, e.v); pq[i] = new HeapEntry(r.Item1, r.Item2); } reheap(); } public static MinHeapPQ<V> empty { get { return new MinHeapPQ<V>(); } } public static bool isEmpty(MinHeapPQ<V> pq) { return pq.mt; } public static int size(MinHeapPQ<V> pq) { return pq.sz; } public static Tuple<KeyT, V> peekMin(MinHeapPQ<V> pq) { return pq.pkmn; } public static MinHeapPQ<V> push(KeyT k, V v, MinHeapPQ<V> pq) { pq.psh(k, v); return pq; } public static MinHeapPQ<V> replaceMin(KeyT k, V v, MinHeapPQ<V> pq) { pq.rplcmin(k, v); return pq; } public static MinHeapPQ<V> deleteMin(MinHeapPQ<V> pq) { pq.dltmin(); return pq; } public static MinHeapPQ<V> merge(MinHeapPQ<V> pq1, MinHeapPQ<V> pq2) { return fromSeq(pq1.sq().Concat(pq2.sq())); } public static MinHeapPQ<V> adjust(Func<KeyT, V, Tuple<KeyT, V>> f, MinHeapPQ<V> pq) { pq.adj(f); return pq; } public static MinHeapPQ<V> fromSeq(IEnumerable<Tuple<KeyT, V>> sq) { var pq = new MinHeapPQ<V>(); pq.bld(sq); return pq; } public static Tuple<Tuple<KeyT, V>, MinHeapPQ<V>> popMin(MinHeapPQ<V> pq) { var rslt = pq.pkmn; if (rslt == null) return null; pq.dltmin(); return new Tuple<Tuple<KeyT, V>, MinHeapPQ<V>>(rslt, pq); } public static IEnumerable<Tuple<KeyT, V>> toSeq(MinHeapPQ<V> pq) { for (; !pq.mt; pq.dltmin()) yield return pq.pkmn; } public static IEnumerable<Tuple<KeyT, V>> sort(IEnumerable<Tuple<KeyT, V>> sq) { return toSeq(fromSeq(sq)); } } }
The above class code offers a full set of static methods and properties:
1. "empty" to create a new empty queue, 2. "isEmpty" to test if a queue is empty, 3. "size" to get the number of elements in the queue, 4. "peekMin" to retrieve the lowest priority key/value pair entry as a Tuple (possibly null for empty queues), 5. "push" to insert an entry, 6. "deleteMin" to remove the lowest priority entry, 7. "replaceMin" to replace the lowest priority and adjust the queue according to the value (faster than a "deleteMin" followed by a "push"), 8. "adjust" to apply a function to every key/value entry pair and reheapify the result, 9. "merge" to merge two queues into a single reheapified result, 10. "fromSeq" to build a queue from a sequence of key/value pair tuples, 11. "popMin" which is a convenience function combining a "peekMin" with a "deleteMin", returning null if the queue is empty and a tuple of the result otherwise, 12. "toSeq" to output an ordered sequence of the queue contents as Tuple's of the key/value pairs, and 13. "sort" which is a convenience function combining "fromSeq" followed by "toSeq".
The first four are all O(1) and the remainder O(log n) except "adjust" and "fromSeq" are O(n), "merge" is O(m + n) where m and n are the sizes of the two queues, and "toSeq" and "sort" are O(n log n); "replaceMin" is still O(log n) but faster than a "deleteMin" followed by a "push" by a constant factor.
Note that the Key type "KeyT" is not generic in order to give better comparison efficiency than using generic comparison using the IComparible interface but can be changed to different numeric types using the "using KeyT = ???" type alias.
The above code can be tested as per the page specification by the following code:
static void Main(string[] args) { Tuple<uint, string>[] ins = { new Tuple<uint,string>(3u, "Clear drains"), new Tuple<uint,string>(4u, "Feed cat"), new Tuple<uint,string>(5u, "Make tea"), new Tuple<uint,string>(1u, "Solve RC tasks"), new Tuple<uint,string>(2u, "Tax return") }; var spq = ins.Aggregate(MinHeapPQ<string>.empty, (pq, t) => MinHeapPQ<string>.push(t.Item1, t.Item2, pq)); foreach (var e in MinHeapPQ<string>.toSeq(spq)) Console.WriteLine(e); Console.WriteLine(); foreach (var e in MinHeapPQ<string>.sort(ins)) Console.WriteLine(e); Console.WriteLine(); var npq = MinHeapPQ<string>.fromSeq(ins); foreach (var e in MinHeapPQ<string>.toSeq(MinHeapPQ<string>.merge(npq, npq))) Console.WriteLine(e); Console.WriteLine(); var npq = MinHeapPQ<string>.fromSeq(ins); foreach (var e in MinHeapPQ<string>.toSeq(MinHeapPQ<string>.merge(npq, npq))) Console.WriteLine(e); foreach (var e in MinHeapPQ<string>.toSeq(MinHeapPQ<string>.adjust((k, v) => new Tuple<uint,string>(6u - k, v), npq))) Console.WriteLine(e); Console.WriteLine(); }
It tests building the queue the slow way using repeated "push"'s - O(n log n), the faster "fromSeq" (included in the "sort") - O(n), and also tests the "merge" and "adjust" methods.
The output of the above test is as follows:
- Output:
(1, Solve RC tasks) (2, Tax return) (3, Clear drains) (4, Feed cat) (5, Make tea) (1, Solve RC tasks) (2, Tax return) (3, Clear drains) (4, Feed cat) (5, Make tea) (1, Solve RC tasks) (1, Solve RC tasks) (2, Tax return) (2, Tax return) (3, Clear drains) (3, Clear drains) (4, Feed cat) (4, Feed cat) (5, Make tea) (5, Make tea) (1, Make tea) (2, Feed cat) (3, Clear drains) (4, Tax return) (5, Solve RC tasks) 再贴上自己写的一点扩展方法
public static class MinHeapPQEX { /// <summary> /// 创建一个空的优先级队列O(1) /// </summary> /// <typeparam name="T"></typeparam> /// <returns></returns> public static PriorityQueue<T> CreatPriorityQueue<T>() { return PriorityQueue<T>.empty; } /// <summary> /// 进队 O(log n) /// </summary> /// <typeparam name="T"></typeparam> /// <param name="pq"></param> /// <param name="priority"></param> /// <param name="model"></param> public static void Enqueue<T>(this PriorityQueue<T> pq, UInt32 priority, T model) { PriorityQueue<T>.push(priority, model, pq); } /// <summary> /// 出队 peek+delete /// </summary> /// <typeparam name="T"></typeparam> /// <param name="pq"></param> /// <returns></returns> public static T Dequeue<T>(this PriorityQueue<T> pq) { return PriorityQueue<T>.popMin(pq).Item1.Item2; } /// <summary> /// 检索,但不出队 O(1) /// </summary> /// <typeparam name="T"></typeparam> /// <param name="pq"></param> /// <returns></returns> public static T Peek<T>(this PriorityQueue<T> pq) { return PriorityQueue<T>.peekMin(pq).Item2; } /// <summary> /// 判断队列是否为空 O(1) /// </summary> /// <typeparam name="T"></typeparam> /// <param name="pq"></param> /// <returns></returns> public static bool IsEmpty<T>(this PriorityQueue<T> pq) { return PriorityQueue<T>.isEmpty(pq); } /// <summary> /// 统计 O(1) /// </summary> /// <typeparam name="T"></typeparam> /// <param name="pq"></param> /// <returns></returns> public static int Count<T>(this PriorityQueue<T> pq) { return PriorityQueue<T>.size(pq); } /// <summary> /// 删除即将出队的元素 /// </summary> /// <typeparam name="T"></typeparam> /// <param name="pq"></param> public static void Delete<T>(this PriorityQueue<T> pq) { PriorityQueue<T>.deleteMin(pq); } }
C# 优先级队列的更多相关文章
- 体验Rabbitmq强大的【优先级队列】之轻松面对现实业务场景
说到队列的话,大家一定不会陌生,但是扯到优先级队列的话,还是有一部分同学是不清楚的,可能是不知道怎么去实现吧,其实呢,,,这东西已 经烂大街了...很简单,用“堆”去实现的,在我们系统中有一个订单催付 ...
- Java中的队列Queue,优先级队列PriorityQueue
队列Queue 在java5中新增加了java.util.Queue接口,用以支持队列的常见操作.该接口扩展了java.util.Collection接口. Queue使用时要尽量避免Collecti ...
- 如何基于RabbitMQ实现优先级队列
概述 由于种种原因,RabbitMQ到目前为止,官方还没有实现优先级队列,只实现了Consumer的优先级处理. 但是,迫于种种原因,应用层面上又需要优先级队列,因此需求来了:如何为RabbitMQ加 ...
- ACM/ICPC 之 优先级队列+设置IO缓存区(TSH OJ-Schedule(任务调度))
一个裸的优先级队列(最大堆)题,但也有其他普通队列的做法.这道题我做了两天,结果发现是输入输出太过频繁,一直只能A掉55%的数据,其他都是TLE,如果将输入输出的数据放入缓存区,然后满区输出,可以将I ...
- java中PriorityQueue优先级队列使用方法
优先级队列是不同于先进先出队列的另一种队列.每次从队列中取出的是具有最高优先权的元素. PriorityQueue是从JDK1.5开始提供的新的数据结构接口. 如果不提供Comparator的话,优先 ...
- stl的优先级队列
#include <iostream> #include <vector> #include <queue> using namespace std; class ...
- 【python cookbook】【数据结构与算法】5.实现优先级队列
问题:要实现一个队列,它能够以给定的优先级对元素排序,且每次pop操作时都会返回优先级最高的那个元素: 解决方案:采用heapq模块实现一个简单的优先级队列 # example.py # # Exam ...
- POJ 2227 The Wedding Juicer (优先级队列+bfs+dfs)
思路描述来自:http://hi.baidu.com/perfectcai_/item/701f2efa460cedcb0dd1c820也可以参考黑书P89的积水. 题意:Farmer John有一个 ...
- 《Java数据结构与算法》笔记-CH4-6优先级队列
/** * 优先级队列 * 效率:插入O(n),删除O(1).第12章介绍如何通过堆来改进insert时间 */ class PriorityQueue { private int maxSize; ...
- STL学习系列七:优先级队列priority_queue容器
1.简介 最大值优先级队列.最小值优先级队列 优先级队列适配器 STL priority_queue 用来开发一些特殊的应用,请对stl的类库,多做扩展性学习 这里给个例子: #include< ...
随机推荐
- xp2p系统的10点技术创新和经验总结
最近在开发完善九天鸟的xp2p系统,解决了很多技术问题,特此总结下. 第一个项目开发,非常重要,它对建立开发规范.团队协作.开发效率,有很重大的意义. 1.分页前台AJAX异步分页,用咱们自己的fup ...
- Chrome源代码结构
首先,开始接触Chrome的童鞋可能有一个疑惑,Chrome和Chromium是同一个东西吗?答案是,Chrome是Google官方的浏览器项目名称,Chromium是Google官方对Chrome开 ...
- source insight 添加自定义macro
打开C:\Documents and Settings\xxxx\My Documents\Source Insight\Projects\Base文件夹下的em文件,可以看到都是由macro定义的一 ...
- 解决ThinkPad x1 发热的问题
F1进入BIOS界面 将intel speedstep设置为禁用 将CPU Power Manager设置为禁用 重启电脑 电脑不再发热
- 忙里偷闲( ˇˍˇ )闲里偷学【C语言篇】——(7)结构体
一.为什么需要结构体? 为了表示一些复杂的事物,而普通类型无法满足实际需求 二.什么叫结构体? 把一些基本类型组合在一起形成的一个新的复合数据类型叫做结构体. 三.如何定义一个结构体? 第一种方式: ...
- MySQL慢日志的相关参数
slow-query-log = on #开启MySQL慢查询功能 slow_query_log_file = /data/mysql/testdb-slow.log #设置MySQL慢查询日志路径 ...
- python3 numpy基本用法归纳总结
安装numpy : pip install numpy numpy数组生成方法总结 In [4]: import numpy as np #使用列表生成一个一维数组 data = [1,2,3,4,5 ...
- 怎样在log4j.xml配置文件中引入变量:小公司经验较多的我和阿里UC等大公司经验较多的Boss,一些技术交流和探讨
从最初学习使用log4j的时候,网上和书本上主要都是使用"log4j.properties"这种属性格式,配置日志.多年以来,一直使用这种格式,总的来说,简单.够用. 而有十 ...
- Eclipse Che开发Spring Web应用(入门) (二)
在上篇博客中我们介绍了如何安装Eclipse Che这种浏览器SDK之后,收到了许多开发者的提问,为了方便初学者开发Java web应用,笔者又一步步实践了spring web开发(demo)过程,欢 ...
- python reversed
reversed()函数是返回序列seq的反向访问的迭代子.参数可以是列表,元组,字符串,不改变原对象. 例题: 牛客最近来了一个新员工Fish,每天早晨总是会拿着一本英文杂志,写些句子在本子上.同事 ...