求:3^0 + 3^1 +...+ 3^(N) mod 1000000007

Input
输入一个数N(0 <= N <= 10^9)
Output
输出:计算结果
Input示例
3
Output示例
40
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 0x3f3f3f3f
#define mem(a) ((a,0,sizeof(a)))
typedef long long ll;
ll n;
ll quick_pow(ll x,ll n)
{
ll ans=;
while(n)
{
if(n&) ans=ans*x%MOD;
n>>=;
x=x*x%MOD;
}
return (ans+MOD-)%MOD;
}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==)
{
x=,y=;
return a;
}
ll d=exgcd(b,a%b,x,y);
ll t=x;
x=y;
y=t-a/b*y;
return d;
}
ll inv(ll a,ll mod)
{
ll x,y;
exgcd(a,mod,x,y);
return (mod+x%mod)%mod;
}
int main()
{
scanf("%lld",&n);
printf("%lld\n",quick_pow(,n+)*inv(,MOD)%MOD);
return ;
}

51Nod 3的幂的和(扩展欧几里德求逆元)的更多相关文章

  1. HDU 5768Lucky7(多校第四场)容斥+中国剩余定理(扩展欧几里德求逆元的)+快速乘法

    地址:http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Time Limit: 2000/1000 MS (Java/Others)    M ...

  2. POJ-1061青蛙的约会,扩展欧几里德求逆元!

                                                               青蛙的约会 以前不止一次看过这个题,但都没有去补..好吧,现在慢慢来做. 友情提示 ...

  3. CodeForces 146E - Lucky Subsequence DP+扩展欧几里德求逆元

    题意: 一个数只含有4,7就是lucky数...现在有一串长度为n的数...问这列数有多少个长度为k子串..这些子串不含两个相同的lucky数... 子串的定义..是从这列数中选出的数..只要序号不同 ...

  4. 公钥密码之RSA密码算法扩展欧几里德求逆元!!

    扩展欧几里得求逆元 实话说这个算法如果手推的话问题不大,无非就是辗转相除法的逆过程,还有一种就是利用扩展欧几里德算法,学信安数学基础的时候问题不大,但现在几乎都忘了,刷题的时候也是用kuangbin博 ...

  5. 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)

    题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...

  6. 扩展gcd求逆元

    当模数为素数时可以用费马小定理求逆元. 模数为合数时,费马小定理大部分情况下失效,此时,只有与模数互质的数才有逆元(满足费马小定理的合数叫伪素数,讨论这个问题就需要新开一个博客了). (对于一个数n, ...

  7. One Person Game(扩展欧几里德求最小步数)

    One Person Game Time Limit: 2 Seconds      Memory Limit: 65536 KB There is an interesting and simple ...

  8. HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))

    Invoker Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 122768/62768K (Java/Other) Total Subm ...

  9. POJ 2142 The Balance【扩展欧几里德】

    题意:有两种类型的砝码,每种的砝码质量a和b给你,现在要求称出质量为c的物品,要求a的数量x和b的数量y最小,以及x+y的值最小. 用扩展欧几里德求ax+by=c,求出ax+by=1的一组通解,求出当 ...

随机推荐

  1. bzoj4519: [Cqoi2016]不同的最小割(分治最小割)

    4519: [Cqoi2016]不同的最小割 题目:传送门 题解: 同BZOJ 2229 基本一样的题目啊,就最后用set记录一下就ok 代码: #include<cstdio> #inc ...

  2. scanf使用与运算符

    scanf接收输入 #include <stdio.h> #include <stdlib.h> // 接收用户输入的小写字母,输出大写字母 int main() { char ...

  3. SSH Key的生成和使用(for git)

    SSH Key的生成和使用 一.总结 1.用git base生成ssh,会生成id_rsa.pub文件,还有一个私钥文件.     $ ssh-keygen -t rsa -C “youremailn ...

  4. 搞笑OI

    OI难 噫吁嚱,维护难哉!OI之难,难于上青天!哈希及DP,代码何茫然!尔来一千两百A,不见金牌背后难.西当华师有考场,可以横绝CN巅.编译不过壮士死,然后超时爆内存相钩连.上有自主招生之高标,下有由 ...

  5. 递归进制转换_strrev

    #define _CRT_SECURE_NO_WARNINGS #include <stdlib.h> #include <stdio.h> #include <stri ...

  6. sicily 1137 河床 (二分分治)

    <计算机算法设计与分析>啃书中... 有点看不进书,就来刷个水题吧,刚开始看错题了还. 注意:是所有测量点相差均不大于di而不是相邻两点... //1137.河床 #include < ...

  7. 关于JQuery中的事件冒泡

    什么是事件冒泡? 事件冒泡就是当父元素和子元素存在同一事件时在子元素的事件处理程序中会自动调用其父级元素的事件处理程序. demo: <!DOCTYPE html> <html xm ...

  8. activity(工作流)初步学习记录

    1.概念 工作流(Workflow),就是“业务过程的部分或整体在计算机应用环境下的自动化”,它主要解决的是“使在多个参与者之间按照某种预定义的规则传递文档.信息或任务的过程自动进行,从而实现某个预期 ...

  9. exsi中的虚拟机添加磁盘后虚拟机中磁盘不出现

    exsi中的虚拟机添加磁盘后虚拟机中磁盘不出现解决: 计算机---> 管理: 这里可以选择磁盘,格式,分区, 改盘符等操作

  10. 优动漫PAINT-百褶裙绘制教程

    不论是萌系水手服还是洋气学院风,一定少不了百褶裙的绘制.不同的群褶,会呈现不同的视觉效果.裙褶的结构在舒展和重叠的时候也存在不一样的绘制技巧.让我们一起通过这篇教程,看看百褶裙是如何绘制的吧~ 作者: ...