luogu P3674 小清新人渣的本愿(莫队+bitset)
这题是莫队维护bitset。
然而我并不会bitset以前讲过认为不考就没学
我真的太菜了。
首先维护一个权值的bitset——s。
操作3比较简单,我们可以\(\sqrt{x}\)枚举约数然后判断就行了。
操作1就是求是否存在
\]
移一下项
\]
也就是\(\text{(s<<x)}\)&\(x\neq0\)。
那么操作2该怎么办?
我们先设\(b'=n-b\)因为\(x=a+b\)
\]
然后类比操作1就行了。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<bitset>
using namespace std;
const int N=100101;
int n,m,a[N],block[N],cnt[N];
string ans[N];
struct ques{
int l,r,type,id,x;
}qu[N];
bool cmp(ques a,ques b){
if(block[a.l]==block[b.l])return a.r<b.r;
else return block[a.l]<block[b.l];
}
bitset<N> x,y;
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
int main(){
n=read();m=read();
int Block=sqrt(n);
for(int i=1;i<=n;i++)a[i]=read(),block[i]=(i-1)/Block+1;
for(int i=1;i<=m;i++)qu[i].type=read(),qu[i].l=read(),qu[i].r=read(),qu[i].x=read(),qu[i].id=i;
sort(qu+1,qu+1+m,cmp);
int l=1,r=0;
for(int i=1;i<=m;i++){
while(r<qu[i].r){
r++;
cnt[a[r]]++;
if(cnt[a[r]]==1)x[a[r]]=1,y[n-a[r]]=1;
}
while(l>qu[i].l){
l--;
cnt[a[l]]++;
if(cnt[a[l]]==1)x[a[l]]=1,y[n-a[l]]=1;
}
while(r>qu[i].r){
if(cnt[a[r]]==1)x[a[r]]=0,y[n-a[r]]=0;
cnt[a[r]]--;
r--;
}
while(l<qu[i].l){
if(cnt[a[l]]==1)x[a[l]]=0,y[n-a[l]]=0;
cnt[a[l]]--;
l++;
}
if(qu[i].type==1){
if((x&(x<<qu[i].x)).any())ans[qu[i].id]="hana";
else ans[qu[i].id]="bi";
}
else if(qu[i].type==2){
if(qu[i].x-n>=0){
if(((y<<(qu[i].x-n))&x).any())ans[qu[i].id]="hana";
else ans[qu[i].id]="bi";
}
else{
if(((x<<(n-qu[i].x))&y).any())ans[qu[i].id]="hana";
else ans[qu[i].id]="bi";
}
}
else{
for(int j=1;j<=sqrt(qu[i].x);j++)
if(qu[i].x%j==0&&x[j]&&x[qu[i].x/j])ans[qu[i].id]="hana";
if(ans[qu[i].id]!="hana")ans[qu[i].id]="bi";
}
}
for(int i=1;i<=m;i++)cout<<ans[i]<<endl;
return 0;
}
luogu P3674 小清新人渣的本愿(莫队+bitset)的更多相关文章
- P3674 小清新人渣的本愿 莫队+bitset
ennmm...bitset能过系列. 莫队+bitset \(\mathcal{O}(m\sqrt n + \frac{nm}{w})\) 维护一个正向的 bitset <N> mem ...
- 洛谷 P3674 小清新人渣的本愿 [莫队 bitset]
传送门 题意: 给你一个序列a,长度为n,有Q次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ...
- 【题解】Luogu P3674 小清新人渣的本愿
原题传送门 这题还算简单(我记得我刚学oi时就来写这题,然后暴力都爆零了) 看见无修改,那么这题应该是莫队 维护两个bitset,第二个是第一个的反串,bitset内维护每个数字是否出现过 第一种操作 ...
- luogu P3674 小清新人渣的本愿
传送门 毒瘤lxl 本质是莫队,关键是怎么处理询问 这里需要开两个bitset(记为\(b1,b2\)),分别存\(x\)和\(n-x\)是否出现 对于询问1,即\(x-y=z\),由于\(y=x-z ...
- P3674 小清新人渣的本愿
P3674 小清新人渣的本愿 一道妙不可言的题啊,,, 一看就知道是个莫队 考虑求答案 1号操作就是个大bitset,动态维护当前的bitset \(S\),把能取哪些值都搞出来,只要\(S\ and ...
- 洛谷P3674 小清新人渣的本愿(莫队)
传送门 由乃tql…… 然后抄了一波zcy大佬的题解 我们考虑把询问给离线,用莫队做 然后用bitset维护,每一位代表每一个数字是否存在,记为$now1$ 然后再记录一个$now1$的反串$now2 ...
- 洛谷P3674 小清新人渣的本愿
题意:多次询问,区间内是否存在两个数,使得它们的和为x,差为x,积为x. n,m,V <= 100000 解: 毒瘤bitset...... 假如我们有询问区间的一个桶,那么我们就可以做到O(n ...
- 洛谷 P3674 小清新人渣的本愿
想看题目的戳我. 我刚开始觉得这道题目好难. 直到我从Awson大佬那儿了解到有一个叫做bitset的STL,这道题目就很容易被解开了. 想知道这个神奇的bitset的戳我. 这个题目一看就感觉是莫队 ...
- [Luogu 3674]小清新人渣的本愿
Description 题库链接 给你一个序列 \(A\) ,长度为 \(n\) ,有 \(m\) 次操作,每次询问一个区间是否可以 选出两个数它们的差为 \(x\) : 选出两个数它们的和为 \(x ...
随机推荐
- office2016 下载直通车
下载地址 微软官方序列号(产品激活密钥):NKGG6-WBPCC-HXWMY-6DQGJ-CPQVG. 激活工具下载 分享源地址
- Crontab入门基础
Crontab入门基础 crontab前言 crontab是Unix和Linux用于设置周期性被执行的指令,是互联网很常用的技术,很多任务都会设置在crontab循环执行,如果不使用crontab,那 ...
- WinServer-IIS-MIME类型
自定义类型的处理流程 1.浏览器问服务器,这是什么类型的文件 2.服务器告诉浏览器这是什么类型的文件(如果不告诉,那么浏览器就会下载相应文件) 3.浏览器告诉windows注册表这是什么类型的文件 4 ...
- 一个HTTP连接是包含两部分的,请求报文和响应报文这俩组合起来才是一次完整的HTTP请求,并不会单独显示请求报文或者响应报文
一个HTTP连接是包含两部分的,请求报文和响应报文这俩组合起来才是一次完整的HTTP请求,并不会单独显示请求报文或者响应报文. 2.注意看,一次HTTP请求,是包括这两部分的
- HDU 4331 Contest 4
一个很直观的想法是,求出每个点上下左右能到达的最大长度.然后枚举其斜边...没想到过了.... 当然,题解有一个很巧妙的优化,利用树状数组,那个太巧妙了. #include<iostream&g ...
- 【c语言】输入一个递增排序的数组的一个旋转,输出旋转数组中的最小元素
//旋转数组的最小数字 //题目:把一个数组最開始的若干个元素搬到数组的末尾.我们称之为数组的旋转. //输入一个递增排序的数组的一个旋转.输出旋转数组中的最小元素. //比如:数组{3.4,5,1, ...
- Web前端国际化之jQuery.i18n.properties
Web前端国际化之jQuery.i18n.properties jQuery.i18n.properties介绍 国际化是如今Web应用程序开发过程中的重要一环,jQuery.i18n.propert ...
- 数据结构—单链表(类C语言描写叙述)
单链表 1.链接存储方法 链接方式存储的线性表简称为链表(Linked List). 链表的详细存储表示为: ① 用一组随意的存储单元来存放线性表的结点(这组存储单元既能够是连续的.也能够是不连续的) ...
- IntelliJ IDEA中JAVA连接MYSQL
1.下载mysql包 2.项目中引入mysql包 3.连接数据库,查询结果 看jdbc数据库连接类 package Facade; import java.sql.*; /** * Created b ...
- iOS定义静态变量、静态常量、全局变量
静态变量 当我们希望一个变量的作用域不仅仅是作用域某个类的某个对象,而是作用域整个类的时候,这时候就可以使用静态变量. staticstatic修饰的变量,是一个私有的全局变量.C或者Java中sta ...