client-go workqueue demo
链接地址:https://github.com/kubernetes/client-go
[root@wangjq examples]# tree
.
├── create-update-delete-deployment
│ ├── main.go
│ └── README.md
├── dynamic-create-update-delete-deployment
│ ├── main.go
│ └── README.md
├── fake-client
│ ├── doc.go
│ ├── main_test.go
│ └── README.md
├── in-cluster-client-configuration
│ ├── Dockerfile
│ ├── main.go
│ └── README.md
├── leader-election
│ ├── main.go
│ └── README.md
├── out-of-cluster-client-configuration
│ ├── main.go
│ └── README.md
├── README.md
└── workqueue
├── main.go
└── README.md
demo1
[root@wangjq workqueue]# cat main.go
/*
Copyright 2017 The Kubernetes Authors. Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/ package main import (
"flag"
"fmt"
"time" "k8s.io/klog" v1 "k8s.io/api/core/v1"
meta_v1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/fields"
"k8s.io/apimachinery/pkg/util/runtime"
"k8s.io/apimachinery/pkg/util/wait"
"k8s.io/client-go/kubernetes"
"k8s.io/client-go/tools/cache"
"k8s.io/client-go/tools/clientcmd"
"k8s.io/client-go/util/workqueue"
) type Controller struct {
indexer cache.Indexer
queue workqueue.RateLimitingInterface
informer cache.Controller
} func NewController(queue workqueue.RateLimitingInterface, indexer cache.Indexer, informer cache.Controller) *Controller {
return &Controller{
informer: informer,
indexer: indexer,
queue: queue,
}
} func (c *Controller) processNextItem() bool {
// Wait until there is a new item in the working queue
key, quit := c.queue.Get()
if quit {
return false
}
// Tell the queue that we are done with processing this key. This unblocks the key for other workers
// This allows safe parallel processing because two pods with the same key are never processed in
// parallel.
defer c.queue.Done(key) // Invoke the method containing the business logic
err := c.syncToStdout(key.(string))
// Handle the error if something went wrong during the execution of the business logic
c.handleErr(err, key)
return true
} // syncToStdout is the business logic of the controller. In this controller it simply prints
// information about the pod to stdout. In case an error happened, it has to simply return the error.
// The retry logic should not be part of the business logic.
func (c *Controller) syncToStdout(key string) error {
obj, exists, err := c.indexer.GetByKey(key)
if err != nil {
klog.Errorf("Fetching object with key %s from store failed with %v", key, err)
return err
} if !exists {
// Below we will warm up our cache with a Pod, so that we will see a delete for one pod
fmt.Printf("Pod %s does not exist anymore\n", key)
} else {
// Note that you also have to check the uid if you have a local controlled resource, which
// is dependent on the actual instance, to detect that a Pod was recreated with the same name
fmt.Printf("Sync/Add/Update for Pod %s\n", obj.(*v1.Pod).GetName())
}
return nil
} // handleErr checks if an error happened and makes sure we will retry later.
func (c *Controller) handleErr(err error, key interface{}) {
if err == nil {
// Forget about the #AddRateLimited history of the key on every successful synchronization.
// This ensures that future processing of updates for this key is not delayed because of
// an outdated error history.
c.queue.Forget(key)
return
} // This controller retries 5 times if something goes wrong. After that, it stops trying.
if c.queue.NumRequeues(key) < {
klog.Infof("Error syncing pod %v: %v", key, err) // Re-enqueue the key rate limited. Based on the rate limiter on the
// queue and the re-enqueue history, the key will be processed later again.
c.queue.AddRateLimited(key)
return
} c.queue.Forget(key)
// Report to an external entity that, even after several retries, we could not successfully process this key
runtime.HandleError(err)
klog.Infof("Dropping pod %q out of the queue: %v", key, err)
} func (c *Controller) Run(threadiness int, stopCh chan struct{}) {
defer runtime.HandleCrash() // Let the workers stop when we are done
defer c.queue.ShutDown()
klog.Info("Starting Pod controller") go c.informer.Run(stopCh) // Wait for all involved caches to be synced, before processing items from the queue is started
if !cache.WaitForCacheSync(stopCh, c.informer.HasSynced) {
runtime.HandleError(fmt.Errorf("Timed out waiting for caches to sync"))
return
} for i := ; i < threadiness; i++ {
go wait.Until(c.runWorker, time.Second, stopCh)
} <-stopCh
klog.Info("Stopping Pod controller")
} func (c *Controller) runWorker() {
for c.processNextItem() {
}
} func main() {
var kubeconfig string
var master string flag.StringVar(&kubeconfig, "kubeconfig", "", "absolute path to the kubeconfig file")
flag.StringVar(&master, "master", "", "master url")
flag.Parse() // creates the connection
config, err := clientcmd.BuildConfigFromFlags(master, kubeconfig)
if err != nil {
klog.Fatal(err)
} // creates the clientset
clientset, err := kubernetes.NewForConfig(config)
if err != nil {
klog.Fatal(err)
} // create the pod watcher
podListWatcher := cache.NewListWatchFromClient(clientset.CoreV1().RESTClient(), "pods", v1.NamespaceDefault, fields.Everything()) // create the workqueue
queue := workqueue.NewRateLimitingQueue(workqueue.DefaultControllerRateLimiter()) // Bind the workqueue to a cache with the help of an informer. This way we make sure that
// whenever the cache is updated, the pod key is added to the workqueue.
// Note that when we finally process the item from the workqueue, we might see a newer version
// of the Pod than the version which was responsible for triggering the update.
indexer, informer := cache.NewIndexerInformer(podListWatcher, &v1.Pod{}, , cache.ResourceEventHandlerFuncs{
AddFunc: func(obj interface{}) {
key, err := cache.MetaNamespaceKeyFunc(obj)
if err == nil {
queue.Add(key)
}
},
UpdateFunc: func(old interface{}, new interface{}) {
key, err := cache.MetaNamespaceKeyFunc(new)
if err == nil {
queue.Add(key)
}
},
DeleteFunc: func(obj interface{}) {
// IndexerInformer uses a delta queue, therefore for deletes we have to use this
// key function.
key, err := cache.DeletionHandlingMetaNamespaceKeyFunc(obj)
if err == nil {
queue.Add(key)
}
},
}, cache.Indexers{}) controller := NewController(queue, indexer, informer) // We can now warm up the cache for initial synchronization.
// Let's suppose that we knew about a pod "mypod" on our last run, therefore add it to the cache.
// If this pod is not there anymore, the controller will be notified about the removal after the
// cache has synchronized.
indexer.Add(&v1.Pod{
ObjectMeta: meta_v1.ObjectMeta{
Name: "mypod",
Namespace: v1.NamespaceDefault,
},
}) // Now let's start the controller
stop := make(chan struct{})
defer close(stop)
go controller.Run(, stop) // Wait forever
select {}
}
demo2:
package main import (
"flag"
"k8s.io/client-go/kubernetes"
"k8s.io/client-go/util/workqueue"
"k8s.io/sample-controller/pkg/signals"
"k8s.io/client-go/tools/cache"
"k8s.io/client-go/tools/clientcmd"
"github.com/golang/glog"
"k8s.io/apimachinery/pkg/watch"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/runtime"
utilruntime "k8s.io/apimachinery/pkg/util/runtime"
apiv1 "k8s.io/api/core/v1"
"fmt"
"k8s.io/apimachinery/pkg/util/wait"
"time"
) /* 控制器 */
type Controller struct {
// 此控制器使用的客户端
clientset kubernetes.Interface
// 此控制器使用的工作队列
queue workqueue.RateLimitingInterface
// 此控制器使用的共享Informer,SharedIndexInformer可以维护缓存中对象的索引
informer cache.SharedIndexInformer
} /* 主函数 */
var (
// 参数变量
masterURL string
kubeconfig string
)
// 启动控制器
func (c *Controller) Run(stopCh <-chan struct{}) {
// 捕获应用程序崩溃并打印日志
defer utilruntime.HandleCrash()
// 关闭队列,从而导致Worker结束
defer c.queue.ShutDown() glog.Info("启动控制器……") // 运行Informer
go c.informer.Run(stopCh) // 在启动Worker之前,等待缓存同步完成
if !cache.WaitForCacheSync(stopCh, c.informer.HasSynced) {
utilruntime.HandleError(fmt.Errorf("同步缓存超时"))
return
} glog.Info("缓存已经同步,准备启动Worker")
// 循环执行Worker,直到TERM
wait.Until(c.runWorker, time.Second, stopCh)
} // 启动Worker
func (c *Controller) runWorker() {
for c.processNextItem() {
}
} // Worker的逻辑框架
func (c *Controller) processNextItem() bool {
// 最大重试次数
maxRetries := // 获取下一个元素,第2个出参提示队列是否已经关闭
key, quit := c.queue.Get()
if quit {
return false
} // 总是移除Key
defer c.queue.Done(key) // 处理Key
err := c.processItem(key.(string)) if err == nil {
// 处理成功,提示队列不再跟踪事件历史
c.queue.Forget(key)
} else if c.queue.NumRequeues(key) < maxRetries {
glog.Errorf("处理%s事件失败,准备重试: %v", key, err)
c.queue.AddRateLimited(key)
} else {
glog.Errorf("处理%s事件失败,放弃: %v", key, err)
c.queue.Forget(key)
utilruntime.HandleError(err)
}
return true
} // Worker核心逻辑
func (c *Controller) processItem(key string) error {
glog.Infof("开始处理事件%s", key)
// 根据Key获取对象
obj, exists, err := c.informer.GetIndexer().GetByKey(key)
if err != nil {
return fmt.Errorf("获取对象%s失败: %v", key, err)
}
fmt.Print(obj)
if !exists {
// 在这里处理对象删除事件
} else {
// 在这里处理对象创建事件
}
// 因为不进行Resync,不会有更新事件
return nil
} func main() {
// 解析参数,存入上述变量
flag.Parse()
cfg, err := clientcmd.BuildConfigFromFlags(masterURL, kubeconfig)
if err != nil {
glog.Fatalf("构建kubeconfig失败: %s", err.Error())
}
// 创建客户端,Clientset是一系列K8S API的集合
clientset, err := kubernetes.NewForConfig(cfg)
if err != nil {
glog.Fatalf("构建clientset失败: %s", err.Error())
}
// 信号处理通道,当进程接收到信号后,此通道可读
stopCh := signals.SetupSignalHandler() queue := workqueue.NewRateLimitingQueue(workqueue.DefaultControllerRateLimiter()) informer := cache.NewSharedIndexInformer(
&cache.ListWatch{
ListFunc: func(options metav1.ListOptions) (runtime.Object, error) {
// 仅仅列出所有命名空间的Pod
return clientset.CoreV1().Pods(metav1.NamespaceAll).List(options)
},
WatchFunc: func(options metav1.ListOptions) (watch.Interface, error) {
return clientset.CoreV1().Pods(metav1.NamespaceAll).Watch(options)
},
},
&apiv1.Pod{},
, // 不进行relist
cache.Indexers{}, // map[string]IndexFunc
) // 添加事件处理回调,仅仅是简单的入队
informer.AddEventHandler(cache.ResourceEventHandlerFuncs{// 此结构实现ResourceEventHandler
AddFunc: func(obj interface{}) {
// 从对象中抽取Key
key, err := cache.MetaNamespaceKeyFunc(obj)
if err == nil {
queue.Add(key)
}
},
DeleteFunc: func(obj interface{}) {
key, err := cache.DeletionHandlingMetaNamespaceKeyFunc(obj)
if err == nil {
queue.Add(key)
}
},
}) // 构建控制器对象
ctrl := Controller{
clientset,
queue,
informer,
} // 启动
ctrl.Run(stopCh)
}
client-go workqueue demo的更多相关文章
- Axis2创建WebService服务端接口+SoupUI以及Client端demo测试调用
第一步:引入axis2相关jar包,如果是pom项目,直接在pom文件中引入依赖就好 <dependency> <groupId>org.apache.axis2</gr ...
- jersey client上传下载文件
jersey client上传文件demo File file = new File("/tmp/test.jpg"); System.out.println(file.exist ...
- 2.spring cloud eureka client配置
红色加粗内容表示修改部分 1.把server项目打成jar包并启动 在项目根目录cmd执行 mvn clean package -Dmaven.test.skip=true mavne仓库地址建议 ...
- SpringCloud IDEA 教学 (三) Eureka Client
写在前头 本篇继续介绍基于Eureka的SpringCloud微服务搭建,回顾一下搭建过程, 第一步:建立一个服务注册中心: 第二步:建立微服务并注入到注册中心: 第三步:建立client端来访问微服 ...
- Linux socket program Demo1(client & server)
client and server Demo of socket. client send data to server. server send data to client. // this ...
- Demo客户端相关规范 v1.0
目录 开发环境 开发工具 代码管理 项目代码 分支管理 名称管理 打包管理 存储路径 存储结构 测试包 正式包 名称管理 依赖组件 内部组件 外部组件 解决方案结构 解决方案命名 解决方案文件夹 项目 ...
- 【SpringCloud】04.SpringCloud Eureka Server与Client的创建
Eureka是Netflix开发的服务发现框架,本身是一个基于REST的服务,主要用于定位运行在AWS域中的中间层服务,以达到负载均衡和中间层服务故障转移的目的.SpringCloud将它集成在其子项 ...
- RPC 的概念模型与实现解析
今天分布式应用.云计算.微服务大行其道,作为其技术基石之一的 RPC 你了解多少?一篇 RPC 的技术总结文章,数了下 5k+ 字,略长,可能也不适合休闲的碎片化时间阅读,可以先收藏抽空再细读:) 全 ...
- Spring中配置和读取多个Properties文件--转
public class PropertiesFactoryBeanextends PropertiesLoaderSupportimplements FactoryBean, Initializin ...
随机推荐
- rsync 的用法
rsync官方网站: https://www.samba.org/ftp/rsync/rsync.html rsync是可以实现增量备份的工具.配合任务计划,rsync能实现定时或间隔同步,配合ino ...
- 使用ATOMac进行Mac自动化测试
ATOMac简介 atomac是一个支持在mac上做自动化的python库,GitHub地址如下: https://github.com/pyatom/pyatom 安装 # Python2 sudo ...
- PHP 变量讲解
PHP 变量 变量是用于存储信息的"容器": 实例 <?php $x=5; $y=6; $z=$x+$y; echo $z; ?> 运行实例 » 与代数类似 x=5y= ...
- 51nod 1584 加权约数和 约数和函数小trick 莫比乌斯反演
LINK:加权约数和 我曾经一度认为莫比乌斯反演都是板子题. 做过这道题我认输了 不是什么东西都是板子. 一个trick 设\(s(x)\)为x的约数和函数. 有 \(s(i\cdot j)=\sum ...
- LeetCode(2)---路径总和
给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和. 说明: 叶子节点是指没有子节点的节点. 示例: 给定如下二叉树,以及目标和 sum = ...
- C++STL算法
1.不变序列算法 不会修改算法所作用的容器或对象 适用于顺序容器和关联容器,时间复杂度为O(n). 2.变值算法 会修改源区间或目标区间元素的值,值被修改的那个区间,不可属于关联容器. 3.删除算法 ...
- CentOS7系统管理与运维实战
CentOS7系统管理与运维实战 下载地址 https://pan.baidu.com/s/1KFHVI-XjGaLMrh39WuhyCw 扫码下面二维码关注公众号回复100007 获取分享码 本书目 ...
- python IF while逻辑判断语句
if判断语句 if 1==1 and 2==2: pass else: print('error') if 1==1 or 2==2: pass else: print('error') while循 ...
- python6.4项目:股票提醒系统
import tushareimport timedef getdata(share): data=tushare.get_realtime_quotes(share.code) share.name ...
- 嵌入式linux简介
嵌入式linux系统应用非常广泛,涵盖各行各业,基于ARM.mips等微处理器架构的硬件平台.基于嵌入式linux系统的设备已经深入生活中各个角落,随处可见. 我们常说的嵌入式linux系统,其实 ...