前言:一道状压DP的入门题(可惜我是个DP蒟蒻QAQ)

------------------

题意简述:求在一个$n*n$的棋盘中放$k$个国王的方案数。注:当在一个格子中放入国王后,以此格为中心的九宫格的其他八个格子将不能放置国王。

数据范围:$1\leq n\leq 9$,$1\leq k\leq n*n$。

------------------------------

看到数据范围,不是$dfs$就是状压DP。这道题我们考虑状压DP。

状压DP就是把某个阶段转换成二进制记录下来,一般用于数据范围较小的题目,状压因此得名。

国王个数是一个限制条件,所以这是一个阶段。在状压DP中,我们一般考虑以行作为阶段。因为上一行的放置情况关系到这一行的放置情况,所以我们还要再用一维表示放置情况,这一维要用到状压。

所以我们设$f[i][j][k]$为在前$i$行中放入$k$个国王,且这一行的摆放情况为$j$的方案数。摆放情况可以用$dfs$预先处理。

考虑转移过程中的限制条件:

如果$ sit[j]$ 与 $sit[k]=1 $,则表示上下相邻的格子都摆放了国王。

如果$ (sit[j]<<1)$ 与 $sit[k]=1 $,则表示左上或右下摆放了国王。

如果$ sit[j]$ 与 $(sit[k]<<1)=1 $,则表示右上或左下的格子摆放了国王。

左右相邻的情况在$dfs$中即可排除。

转移方程:$f[i][j][s]+=f[i-1][k][s-num[j]]$。$num[j]$表示放置情况为$j$时国王的放置个数。

边界:$f[1][i][num[i]]=1$。

其实貌似可以用滚动数组优化来省掉第一维,但我懒得写了。

注意开$long long$。

代码:

#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,m,cnt=,ans=;
int sit[],num[];//预处理放置情况
int f[][][];
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if (ch=='-') f=-;ch=getchar();}
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x*f;
}
void dfs(int pos,int sum,int node)
{
if (node>=n)
{
sit[++cnt]=pos;
num[cnt]=sum;
return;
}
dfs(pos,sum,node+);//在此格不放入国王
dfs(pos+(<<node),sum+,node+);//在此格放入国王,此时要跳过相邻的格子。
}
signed main()
{
n=read(),m=read();
dfs(,,);
for (int i=;i<=cnt;i++) f[][i][num[i]]=;//边界
for (int i=;i<=n;i++)
for (int j=;j<=cnt;j++)
for (int k=;k<=cnt;k++)
{
if (sit[j]&sit[k]) continue;
if ((sit[j]<<)&sit[k]) continue;
if (sit[j]&(sit[k]<<)) continue;
for (int s=m;s>=num[j];s--) f[i][j][s]+=f[i-][k][s-num[j]];//转移
}
for (int i=;i<=cnt;i++) ans+=f[n][i][m];
printf("%ld",ans);
return ;
}

【SCOI2005】互不侵犯 题解(状压DP)的更多相关文章

  1. 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)

    洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...

  2. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  3. 【BZOJ1087】 [SCOI2005]互不侵犯King 状压DP

    经典状压DP. f[i][j][k]=sum(f[i-1][j-cnt[k]][k]); cnt[i]放置情况为i时的国王数量 前I行放置情况为k时国王数量为J #include <iostre ...

  4. [BZOJ1087] [SCOI2005] 互不侵犯King (状压dp)

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...

  5. [SCOI2005]互不侵犯(状压DP)

    嗝~算是状压DP的经典题了~ #\(\mathcal{\color{red}{Description}}\) 在\(N×N\)的棋盘里面放\(K\)个国王,使他们互不攻击,共有多少种摆放方案.国王能攻 ...

  6. 【洛谷 P1896】[SCOI2005]互不侵犯(状压dp)

    题目链接 题意:在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 这是道状压\(DP\)好题啊.. ...

  7. BZOJ 1087 [SCOI2005]互不侵犯King ——状压DP

    [题目分析] 沉迷水题,吃枣药丸. [代码] #include <cstdio> #include <cstring> #include <iostream> #i ...

  8. 互不侵犯king (状压dp)

    互不侵犯king (状压dp) 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子.\(1\le n\ ...

  9. BZOJ-1087 互不侵犯King 状压DP+DFS预处理

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2337 Solved: 1366 [Submit][ ...

  10. bzoj1087 互不侵犯King 状压dp+bitset

    题目传送门 题目大意:中文题面. 思路:又是格子,n又只有9,所以肯定是状压dp,很明显上面一行的摆放位置会影响下一行,所以先预处理出怎样的二进制摆放法可以放在上下相邻的两行,这里推荐使用bitset ...

随机推荐

  1. JVM 学习笔记(一)

    一:jvm架构图解 我们经常关注的jdk和jre如图所示: jre包含在jdk中,这里说一下jdk和jre的作用 JRE是Java Runtime Environment的缩写,是Java程序的运行环 ...

  2. CMDB03 /今日未采集的资产、资产入库、资产变更记录、资产采集

    CMDB03 /今日未采集的资产.资产入库.资产变更记录.资产采集 目录 CMDB03 /今日未采集的资产.资产入库.资产变更记录.资产采集 1. 获取今日未采集的服务器 2. server资产入库以 ...

  3. typeError:The value of a feed cannot be a tf.Tensor object.Acceptable feed values include Python scalars,strings,lists.numpy ndarrays,or TensorHandles.For reference.the tensor object was Tensor...

    如上贴出了:错误信息和错误代码. 这个问题困扰了自己两天,报错大概是说输入的数据和接受的格式不一样,不能作为tensor. 后来问了大神,原因出在tf.reshape(),因为网络训练时用placeh ...

  4. vue axios接口封装、Promise封装、简单的axios方法封装、vue接口方法封装、vue post、get、patch、put方法封装

    相信大家在做前后端数据交互的时候都会给请求做一些简单的封装就像之前封装ajax方法一样axios的封装也是一样的简单下面这个就是封装的axios的方法,require.js import axios ...

  5. 移除hmtl5 input type=“number”的step验证

    设置 step="any"例如:<input type="number" step="any" value=""& ...

  6. 对Vue中的MVVM原理解析和实现

    对Vue中的MVVM原理解析和实现 首先你对Vue需要有一定的了解,知道MVVM.这样才能更有助于你顺利的完成下面原理的阅读学习和编写 下面由我阿巴阿巴的详细走一遍Vue中MVVM原理的实现,这篇文章 ...

  7. MnasNet:经典轻量级神经网络搜索方法 | CVPR 2019

    论文提出了移动端的神经网络架构搜索方法,该方法主要有两个思路,首先使用多目标优化方法将模型在实际设备上的耗时融入搜索中,然后使用分解的层次搜索空间,来让网络保持层多样性的同时,搜索空间依然很简洁,能够 ...

  8. Python Ethical Hacking - TROJANS Analysis(2)

    DOWNLOAD & EXECUTE PAYLOAD A generic executable that downloads & executes files. Disadvantag ...

  9. C++语法小记---继承中的构造和析构顺序

    继承中构造和析构的顺序 先父母,后客人,最后自己 静态变量和全局变量在最开始 析构和构造的顺序完全相反 #include <iostream> #include <string> ...

  10. Python源码剖析|百度网盘免费下载|Python新手入门|Python新手学习资料

    百度网盘免费下载:Python源码剖析|新手免费领取下载 提取码:g78z 目录  · · · · · · 第0章 Python源码剖析——编译Python0.1 Python总体架构0.2 Pyth ...