题目链接

对于基本区间dp,设dp[l][r]是区间l到r的最大价值。

我们可以枚举区间的长度,在枚举左端点,判断即可。

当右端点大于n,就break。

dp[l][r]=max(dp[l+1][r]+v[l]*(n-i+1),dp[l][r-1]+v[r]*(n-i+1))

别忘了初始化,dp[i][i]=n*v[i].

代码:

 1 #include<cstdio>
2 #include<iostream>
3 using namespace std;
4 int dp[3000][3000];
5 int n,v[3000];
6 int main(){
7 scanf("%d",&n);
8 for(int i=1;i<=n;++i)
9 scanf("%d",&v[i]);
10 for(int i=1;i<=n;++i)dp[i][i]=n*v[i];
11 for(int i=2;i<=n;++i){
12 for(int l=1;l<=n;l++){
13 int r=l+i-1;
14 if(r>n)break;
15 dp[l][r]=max(dp[l+1][r]+v[l]*(n-i+1),dp[l][r-1]+v[r]*(n-i+1));
16 }
17 }printf("%d\n",dp[1][n]);
18 return 0;
19 }

题目链接

也可以用区间dp做。

设dp[i][j]是区间[i,j]的最佳答案。

我们枚举区间。

对于每次区间,枚举合并的交点。

当且仅当合并两方值相等时才能合并。

if(dp[i][k]==dp[k+1][j])dp[i][j]=max(dp[i][j],dp[i][k]+1)

代码:

#include<cstdio>
#include<iostream>
using namespace std;
int n,dp[500][500],ans=-(1<<30);
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i)scanf("%d",&dp[i][i]);
for(int i=n-1;i>=1;--i){
for(int j=i+1;j<=n;++j){
for(int k=i;k<j;++k)
if(dp[i][k]==dp[k+1][j])//可以合并
dp[i][j]=max(dp[i][j],dp[i][k]+1);//dp[i][k]&dp[k+1][j]'s merge
ans=max(ans,dp[i][j]);//max
}
}printf("%d\n",ans);
return 0;
}

题目链接

本题与上一题类似,发现样例都一样。

但是神奇的数据范围不得不让我们重新考虑转移方程。

一看每个数都小于等于40,那么很容易想到dp中的一维表示合并的数。

看题解后恍然大悟,设dp[i][j]是能够合并成i且左端点为j的右端点的位置。

那么,dp[i][j]=dp[i-1][dp[i-1][j]]

即,当一个数可以合并成i时,一定是由i-1合并出来的。

我们画一个数轴,其中j在左边。

那么,能合并出i-1的位置就在dp[i-1][j]

那么继续往后,在合并出一个i-1,那么这个位置显然是:

dp[i-1][dp[i-1][j]]

至此,得到转移方程。

那么,表示数字时,我们只需要开到58.

首先,因为数字小于等于40.其次,

262144=218.

用类似倍增的思想,来倍增2.

于是我们要开到58.(也可以用运气法开个大的)

代码:

 1 #include<cstdio>
2 #include<iostream>
3 #define MAXN 262144+100
4 using namespace std;
5 int n,a[MAXN],ans;
6 int dp[59][MAXN];
7 int main(){
8 scanf("%d",&n);
9 for(int i=1;i<=n;++i)scanf("%d",&a[i]),dp[a[i]][i]=i+1;
10 for(int i=2;i<=58;i++){
11 for(int j=1;j<=n;j++){
12 if(!dp[i][j])dp[i][j]=dp[i-1][dp[i-1][j]];
13 if(dp[i][j])ans=max(ans,i);
14 }
15 }printf("%d\n",ans);
16 return 0;
17 }

题目链接

我们可以先断环为链,然后枚举右端点。相应的,左端点从右端点依次枚举到1.

那么,设dp[i][j]是区间【i,j】合并的最优策略,则有:

dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]+a[i]*a[k+1]*a[j+1])

我们在i与j之间枚举k做断点,后面部分就是新合并后的价值。

代码:

#include<cstdio>
#include<iostream>
using namespace std;
struct node{
int l,r;//l from r to
}q[300];
int n,a[300],maxn;
int dp[300][300];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i)
scanf("%d",&a[i]),a[i+n]=a[i];
for(int j=2;j<=(n<<1);++j){//枚举右端点
for(int i=j-1;j-i<n&&i>=1;i--){//向左依次枚举区间
for(int k=i;k<j;++k){//枚举断点
dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]+a[i]*a[k+1]*a[j+1]);
maxn=max(dp[i][j],maxn);//每次合并=max(左区间值+右区间值+新合并的值)
}//取max
}
}
printf("%d\n",maxn);
return 0;
}

简单区间dp的更多相关文章

  1. 简单Dp----最长公共子序列,DAG最长路,简单区间DP等

    /* uva 111 * 题意: * 顺序有变化的最长公共子序列: * 模板: */ #include<iostream> #include<cstdio> #include& ...

  2. poj1651 Multiplication Puzzle(简单区间dp)

    题目链接:http://poj.org/problem?id=1651 题意:一系列的数字,除了头尾不能动,每次取出一个数字,这个数字与左右相邻数字的乘积为其价值, 最后将所有价值加起来,要求最小值. ...

  3. 租用游艇(简单区间dp)

    租用游艇 时间限制: 1 Sec  内存限制: 128 MB提交: 1  解决: 1[提交][状态][讨论版][命题人:quanxing] 题目描述 长江游艇俱乐部在长江上设置了n 个游艇出租站1,2 ...

  4. [luogu2446][bzoj2037][SDOI2008]Sue的小球【区间DP】

    分析 简单区间DP, 定义状态f[i][j][0/1]为取完i-j的小球最后取i/j上的小球所能获得的最大价值. 排序转移. ac代码 #include <bits/stdc++.h> # ...

  5. POJ2955--Brackets 区间DP入门 括号匹配

    题意很简单,就是求给出串中最大的括号匹配数目.基础题,格式基本为简单区间dp模板. #include<iostream> #include<string.h> using na ...

  6. Codeforces Round #336 (Div. 2)B 暴力 C dp D 区间dp

    B. Hamming Distance Sum time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  7. [THUSC2016]成绩单 [区间dp]

    简单区间dp. 考虑 \(f_{i,j,mn,mx}\)表示 \(i,j\) 区间的最大值为 \(mx\),最小值为 \(mn\) 的最小花费,\(g_{i,j}\) 为删掉 \([i,j]\) 的最 ...

  8. tyvj 1198 矩阵连乘——区间dp

    tyvj 1198 矩阵连乘 题目描述 一个n*m矩阵由n行m列共n*m个数排列而成.两个矩阵A和B可以相乘当且仅当A的列数等于B的行数.一个N*M的矩阵乘以一个M*P的矩阵等于一个N*P的矩阵,运算 ...

  9. 区间dp复习 之 tyvj 1198 矩阵连乘

    题目描述 一个\(n*m\)矩阵由\(n\)行\(m\)列共\(n*m\)个数排列而成.两个矩阵\(A\)和\(B\)可以相乘当且仅当\(A\)的列数等于\(B\)的行数.一个\(N*M\)的矩阵乘以 ...

随机推荐

  1. USB Key

    随着互联网和电子商务的发展,USB Key作为网络用户身份识别和数据保护的“电子钥匙”,正在被越来越多的用户所认识和使用.本文对USB Key的产生和未来的发展趋势作了一个简单的介绍. 目前市场上见到 ...

  2. C# .NET容器的源码

    这里有List<T>的源码http://referencesource.microsoft.com/#mscorlib/system/collections/generic/list.cs

  3. 总结一篇shell调试技巧及常见的脚本错误

      #常见的调试命令工具 1.使用bash命令参数调试 #使用 [root@game ~]# sh [-xvn] test.sh #参数解释: -x:将执行的脚本内容输出出来,可以看到执行的过程 -n ...

  4. Python自动化测试入门科技树

    Python基础: 入门语法和数据类型: 编码环境安装基本语法 常用数据类型 常用运算符 Llist.Tuple.Dict.if&for.while Python进阶: 函数: 语法 内置函数 ...

  5. [V&N公开赛] CheckIn

    V&N战队考核+招新,赵师傅出的Web题,做着感觉有点顶,趁热打铁写write up记录一下考察的知识点 这道题说是CheckIn其实还是有一定难度的(也可能是我太菜了),进入题目直接给出了f ...

  6. DIY申请达姆施塔特工业大学计算机专业(Informatik)硕士(Master)【附个人简历和动机信】

    1.个人概况 双非院校本科毕业两年,已来德国一年. APS绩点2.5,均分80.17. 2020.6月考出5443德福成绩,7月中下旬递交材料,9月初获得Zulassung(录取) PS:后来考出54 ...

  7. Zabbix如何解决“System time is out of sync (diff with Zabbix server > 60s)”告警

    Zabbix如何解决"System time is out of sync (diff with Zabbix server > 60s)"这种告警呢? 这个错误对应的中文提 ...

  8. [Python]在当前目录下创建三个目录

    import os os.mkdir("2018-03-16-b018") os.mkdir("2019-03-16-b019") os.mkdir(" ...

  9. 重学Ajax

    什么是Ajax Asynchronous JavaScript and xml 异步的JavaScript和XML 只是一种js的应用,在无需重新加载整个网页的情况下实现部分网页的数据更新的技术.减少 ...

  10. .NET Core加解密实战系列之——对称加密算法

    简介 加解密现状,编写此系列文章的背景: 需要考虑系统环境兼容性问题(Linux.Windows) 语言互通问题(如C#.Java等)(加解密本质上没有语言之分,所以原则上不存在互通性问题) 网上资料 ...