标准机器学习的开发编程流程

关注公众号“轻松学编程”了解更多。

一、流程

标准机器学习的开发编程流程:

1、获取数据(爬虫、数据加载、业务部门获取)

2、数据建模(摘选样本数据(特征、目标))

3、数据清洗(异常值检测和过滤)

4、特征工程(归一化处理:提高算法模型的精度)

​ 归一化目的:使得每种特征数据的量级(权重)保持大致一致

​ 归一化方法(常用):1.普通归一化处理 2. 区归一化 处理 3.使用函数

5、模型选择(分类、回归)

6、模型评估(打分,分类边界图,残差直方图)

7、算法调优(调整模型对象的参数值)

8、绘图

注意:以下命令都是在浏览器中输入。
cmd命令窗口输入:jupyter notebook
打开浏览器输入网址http://localhost:8888/

二、预测年收入是否大于50K美元

需求:读取adult.txt文件,最后一列是年收入,并使用KNN算法训练模型,然后使用模型预测一个人的年收入是否大于50 。

说明:获取年龄、教育程度、职位、每周工作时间作为机器学习数据 获取薪水作为对应结果 。

1、导包

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt from pandas import DataFrame,Series #创建K-近邻算法模型
from sklearn.neighbors import KNeighborsClassifier
#对模型进行评分
from sklearn.model_selection import train_test_split #内嵌画图
%matplotlib inline

2、获取数据

data=pd.read_csv(r'./adults.txt')

3、数据建模

3.1 摘取特征数据

features=data[['age','education_num','occupation',
'hours_per_week']]
features.head()

由于特征数据中有字符串型数据,需要转换成实质性数据才能参与运算。

3.1.1 数据转换

将职业中的String类型数据转换为Number。

思路:

  • 获取职业种类n,然后根据创建一个n行n列的对角矩阵;
  • 对职业列表中的每一种职业进行映射,得到一个n列的一维数组;
  • 把职业这一列拆分成n列;
  • 把特征数据的所有列转换成m列1行的二维数组
  • 把二维数组合并形成新的特征数据(模型运算时需要的是二维数组)
#获取特征数据中职业有几种
unique=features['occupation'].unique()
occ_size=unique.size
# 把df中的某一列字符串转成对角矩阵
dm=np.eye(occ_size)
def str2Num(occ):
global dm
#获取当前职业在数组unique中的下标
index=np.argwhere(occ==unique)[0][0]
return dm[index] #对职业进行映射
features['occupation']=features.occupation.map(str2Num)
features.head()

#features['occupation'].unique().size的值为15
# occupation现在是一个1行15列的一维数组,把occupation分拆成15列,
#然后把每一列级联
occ1=features['occupation'][0]
for item in features['occupation'][1:]:
occ1=np.concatenate((occ1,item))
#转成二维数组
occupation=occ1.reshape(-1,15)
ages=features['age'].reshape(-1,1)
education_nums=features['education_num'].reshape(-1,1)
hours_per_week=features['hours_per_week'].reshape(-1,1)
#把每一列级联
new_features=np.hstack((occupation,h_age_edu,hours_per_week))
new_features

3.2 摘取目标数据

target=data['salary']
target.head()

4、模型选择

选择分类模型来训练。

#random_state=1 : 固定随机状态种子
x_train,x_test,y_train,y_test=train_test_split(new_features,
target,
test_size=0.2,
random_state=1)

训练模型

#k先取值为5,可根据后面评分高低调优
knn=KNeighborsClassifier(n_neighbors=5)
#训练模型
knn.fit(x_train,y_train)

5、模型评分

#评分
knn.score(x_test,y_test)

6、算法调优(调整模型对象的参数值)

knn=KNeighborsClassifier(n_neighbors=20)
#训练模型
knn.fit(x_train,y_train)
#重新评分
knn.score(x_test,y_test)

7、预测

knn.predict(x_test)

后记

【后记】为了让大家能够轻松学编程,我创建了一个公众号【轻松学编程】,里面有让你快速学会编程的文章,当然也有一些干货提高你的编程水平,也有一些编程项目适合做一些课程设计等课题。

也可加我微信【1257309054】,拉你进群,大家一起交流学习。
如果文章对您有帮助,请我喝杯咖啡吧!

公众号

关注我,我们一起成长~~

python机器学习的开发流程的更多相关文章

  1. python 完整项目开发流程

    1. 安装 python    2. 安装virtualenvwrapper    3. 虚拟环境相关操作    4. 进入虚拟环境, 安装django    5. 安装编辑器    6. 安装mys ...

  2. 五款实用免费的Python机器学习集成开发环境(5 free Python IDE for Machine Learning)(图文详解)

    前言 集成开发环境(IDE)是提供给程序员和开发者的一种基本应用,用来编写和测试软件.一般而言,IDE 由一个编辑器,一个编译器(或称之为解释器),和一个调试器组成,通常能够通过 GUI(图形界面)来 ...

  3. python全栈开发-Day2 布尔、流程控制、循环

    python全栈开发-Day2 布尔 流程控制 循环   一.布尔 1.概述 #布尔值,一个True一个False #计算机俗称电脑,即我们编写程序让计算机运行时,应该是让计算机无限接近人脑,或者说人 ...

  4. python 面向对象终极进阶之开发流程

    好了,你现在会了面向对象的各种语法了,  但是你会发现很多同学都是学会了面向对象的语法,却依然写不出面向对象的程序,原因是什么呢?原因就是因为你还没掌握一门面向对象设计利器, 此刻有经验的人可能会想到 ...

  5. 《python机器学习—预测分析核心算法》:构建预测模型的一般流程

    参见原书1.5节 构建预测模型的一般流程 问题的日常语言表述->问题的数学语言重述重述问题.提取特征.训练算法.评估算法 熟悉不同算法的输入数据结构:1.提取或组合预测所需的特征2.设定训练目标 ...

  6. Python各个岗位的开发流程

     根据张大美女提供资料微修改,在这谢谢张大美女! 1.python软件开发工程师 1.1 项目启动会 说明项目目标.阶段划分.组织结构.管理流程等关键事项. 1.2 需求调研 由用户提出,描述产品的功 ...

  7. Python基础之模块:7、项目开发流程和项目需求分析及软件开发目录

    一.项目开发流程 1.项目需求分析 明确项目具体功能: 明确到底要写什么东西,实现什么功能,在这个阶段的具体要询问项目经理和客户的需求 参与人员: 产品经理.架构师.开发经理 技术人员主要职责: 引导 ...

  8. python开发流程及项目目录规范

    # 项目开发流程 1.调研 2.需求分析   ---产品经理 3.任务分配   ---项目经理 4.写项目demo   ---项目经理.架构师.程序猿 5.架构分析   ---项目经理.架构师 6.编 ...

  9. 2016年GitHub排名前20的Python机器学习开源项目(转)

    当今时代,开源是创新和技术快速发展的核心.本文来自 KDnuggets 的年度盘点,介绍了 2016 年排名前 20 的 Python 机器学习开源项目,在介绍的同时也会做一些有趣的分析以及谈一谈它们 ...

随机推荐

  1. Tomcat 8.5中获取客户端真实IP及协议

    获取客户端真实IP ServletRequest接口提供了getRemoteAddr方法用于获取客户端IP,但是当客户端通过代理服务器访问后端服务器的时候,服务器调用getRemoteAddr方法会返 ...

  2. vant实现下拉多选组件

    1.最近需要做一个移动端多选的功能,发现vant上没有多选的下拉组件,于是决定写一个,样式如下 调用部分传入值 propsselect-data-opts 传入list数据, disabled 下拉是 ...

  3. 从零搭建Golang开发环境--go修仙序章

    1. 什么是go语言 Go(又称 Golang)是 Google 的 Robert Griesemer,Rob Pike 及 Ken Thompson 开发的一种静态 .强类型.编译型语言 .Go 语 ...

  4. 【小白学PyTorch】17 TFrec文件的创建与读取

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...

  5. interp1一维数据插值在matlab中的用法

    转载:https://ww2.mathworks.cn/help/matlab/ref/interp1.html?s_tid=srchtitle#btwp6lt-2_1 interp1 一维数据插值( ...

  6. matlab中colormap

    来源:https://ww2.mathworks.cn/help/matlab/ref/colormap.html?searchHighlight=colormap&s_tid=doc_src ...

  7. excel——VlookUp函数的使用

    VlookUp函数,查询两个表中的相同字段数据,并将需要引用的数据从B表填充到A表 1.打开A表,将需要查询的列选中 在需要引用的列输入 = 在上方,函数选择中选择VLOOKUP函数 Windows: ...

  8. .NET Core使用FluentEmail发送邮件

    前言 在实际的项目开发中,我们会遇到许多需要通过程序发送邮件的场景,比如异常报警.消息.进度通知等等.一般情况下我们使用原生的SmtpClient类库居多,它能满足我们绝大多数场景.但是使用起来不够简 ...

  9. 多路复用select和epoll的区别(转)

    先说下本文框架,先是问题引出,然后概括两个机制的区别和联系,最后介绍每个接口的用法 一.问题引出 联系区别 问题的引出,当需要读两个以上的I/O的时候,如果使用阻塞式的I/O,那么可能长时间的阻塞在一 ...

  10. Anaconda安装和使用 akshare获取股票数据

    介绍 Anaconda是开源的Python包管理器.既是Python各种库的大礼包集合,特别是数据分析和科学计算方面的库都预装了,也是一个能创建虚拟机环境的工具. 我为什么安装 我安装它的原因不是科学 ...