题意

给定一个 \(p (p\le 10^{18})\), 一个 \(q(q \le 10^9)\), 要找到一个最大的 \(x\) 满足:

  1. \(p \%x = 0\)
  2. \(q \% x \neq 0\)

分析

直接枚举 \(p\) 的因数不可取,复杂度为 \(O(\sqrt p)\)。需要另辟蹊径。

容易发现,若 \(p\%q \neq 0\) ,那么答案即为 \(p\)

接下来考虑 \(p\%q = 0\) 的情况。

考虑到唯一分解的定理对于任意一个大于 1 的数字 n 都有

\[n = q_1^{c_1}q_2^{c_2}\cdots q_n^{c_n}
\]

其中 \(q_i\) 为 \(n\) 的质因数,\(c_i\) 为其指数。

如果一个整数 \(n\) 不能被 \(m\) 整除,那么肯定有一个质数 \(e\),它在 \(n\) 中的指数小于在 \(m\) 中的指数。例如 \(12 = 2^2*3^1\) 与 \(8 = 2^3 * 3^0\)。

然后我们枚举这个 \(e\),它必定是 \(q\) 的一个质因数,所以我们枚举 \(q\) 的质因子 \(e\),然后不断的让 \(p\) 除以 \(e\),直到 \(p\%q\neq 0\),此时的 \(p\) 就是满足题目要求的 \(x\),最后在所有的情况中取一个最大的 \(x\) 即可。

单组询问复杂度 \(O(\sqrt q)\)

int T;
ll p, q; ll gcd(ll a, ll b){
return b == 0 ? a : gcd(b, a % b);
}
void solve(ll t){
ll res = 0;
// 枚举 q 的质因数
for(int i = 2; i * i <= t;i++){
if(t % i) continue;
ll now = p; // 尝试不断的用 i 去除 p, 直到 p % q != 0
while(now % q == 0) now /= i;
while(t % i == 0) t /= i;
res = max(res, now);
}
if(t > 1){ // 质因数分解的最后一步
ll now = p;
while(now % q == 0) now /= t;
res = max(res, now);
}
printf("%lld\n", res);
}
int main(){
cin >> T;
while(T--){
scanf("%lld%lld", &p, &q);
if(p % q == 0) {
solve(q);
} else {
printf("%lld\n", p);
}
}
return 0;
}

贴一下官方题解,原理与上述一致。

CF-1445 C - Division 数论,质因数,唯一分解定理的更多相关文章

  1. hdu 1215 求约数和 唯一分解定理的基本运用

    http://acm.hdu.edu.cn/showproblem.php?pid=1215 题意:求解小于n的所有因子和 利用数论的唯一分解定理. 若n = p1^e1 * p2^e2 * ……*p ...

  2. UVA10791-Minimum Sum LCM(唯一分解定理基本应用)

    原题:https://vjudge.net/problem/UVA-10791 基本思路:1.借助唯一分解定理分解数据.2.求和输出 知识点:1.筛法得素数 2.唯一分解定理模板代码 3.数论分析-唯 ...

  3. 简单数论之整除&质因数分解&唯一分解定理

    [整除] 若a被b整除,即a是b的倍数,那么记作b|a("|"是整除符号),读作"b整除a"或"a能被b整除".b叫做a的约数(或因数),a ...

  4. B - Common Divisors (codeforces)数论算法基本定理,唯一分解定理模板

    You are given an array aa consisting of nn integers. Your task is to say the number of such positive ...

  5. FZU 1075 分解素因子【数论/唯一分解定理/分解素因子裸模板】

    [唯一分解定理]:https://www.cnblogs.com/mjtcn/p/6743624.html 假设x是一个正整数,它的值不超过65535(即1<x<=65535),请编写一个 ...

  6. HDU-1215 七夕节 数论 唯一分解定理 求约数之和

    题目链接:https://cn.vjudge.net/problem/HDU-1215 题意 中文题,自己去看吧,懒得写:) 思路 \[ Ans=\prod \sum p_i^j \] 唯一分解定理 ...

  7. AtCoder - 2286 (数论——唯一分解定理)

    题意 求n!的因子数%1e9+7. 思路 由唯一分解定理,一个数可以拆成素数幂之积,即2^a * 3^b *……,n!=2*3*……*n,所以计算每个素因子在这些数中出现的总次数(直接对2~n素因子分 ...

  8. POJ1845Sumdiv(求所有因子和 + 唯一分解定理)

    Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 17387   Accepted: 4374 Descripti ...

  9. POJ - 1845 G - Sumdiv (唯一分解定理)

    Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S m ...

  10. hdu3826-Squarefree number-(欧拉筛+唯一分解定理)

    Squarefree number Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

随机推荐

  1. 实现一个简单的 Linux Shell(C++)

    Implement a simple command interpreter in Linux. The interpreter should: support both internal and e ...

  2. Java JDBC的 url 配置信息和Mybatis核心配置文件(MySQL 的配置信息)

    JDBC 连接数据库的 url driver=com.mysql.jdbc.Driver url=jdbc:mysql://localhost:3306/smbms?uesSSL=true&u ...

  3. SDUST数据结构 - chap4 串

    函数题: 6-1 查找子串: 裁判测试程序样例: #include <stdio.h> #define MAXS 30 char *search(char *s, char *t); vo ...

  4. ctfhub技能树—文件上传—文件头检查

    打开靶机 尝试上传一个php文件 抓包修改 放包 制作图片马 上传图片马,并修改文件类型为png 测试连接 查找flag 成功拿到flag

  5. AWD生存之道

    比赛开始阶段 常见漏洞的防御手段:https://www.freebuf.com/articles/web/208778.html 一.登陆SSH 重点 如果ssh的密码不是随机密码,记得一开始就进行 ...

  6. ABAP 多表联合查询

    inner join(等值连接) 只返回两个表中联结字段相等的行left join(左联接) 返回包括左表中的所有记录和右表中联结字段相等的记录right join(右联接) 返回包括右表中的所有记录 ...

  7. 面试官问我CAS,我一点都不慌

    文章以纯面试的角度去讲解,所以有很多的细节是未铺垫的. 文章中写到的处理线程安全的思路每一项技术都可以写出一篇文章,AQS.Synchronized.Atomic...周末肝起来!下周再来给大家安排! ...

  8. 無法直接連接互聯網,需要使用代理時(Scrapy)

    在windows系統中,如果無法直接連接互聯網,需要使用代理時該怎麽做呢? 1. 在powershell中設置proxy 背景:使用公司電腦,無法直接訪問互聯網,想要訪問互聯網就得使用代理,但是在控制 ...

  9. 转 Fiddler1 简单使用

    Fiddler1 简单使用   文章转自:https://www.cnblogs.com/zhengna/p/9008014.html   1.Fiddler下载地址:https://www.tele ...

  10. python生成器 递归

    生成器 生成器:只要函数体内出现yield关键字,那么再执行函数就不会执行函数代码,会得到一个结果,该结果就是生成器   生成器就是迭代器   yield的功能 1.yield为我们提供了一种自定义迭 ...