论文:Region Normalization for Image Inpainting, AAAI 2020

代码:https://github.com/geekyutao/RN

图像修复的目的是重建输入图像的损坏区域。它在图像编辑中有许多应用,例如面部编辑和图像遮挡。图像修复中的关键问题是在损坏的区域中生成视觉上合理的内容。

现有的图像修复方法可以分为两类:传统方法和基于学习的方法。传统方法通过基于扩散的方式来填充损坏的区域,这些方法会将邻近的信息传播到损坏区域。基于学习的方法通常训练神经网络以在损坏区域中合成内容,近年来已大大超越了传统方法。但是,当前的方法大多通过改进网络结构来提升性能,忽略了图像修复的本质问题:损坏的区域大多和未损坏的区域通常是独立的。

将损坏的图像输入到神经网络中可能会产生问题,例如无效像素的卷积以及归一化的均值和方差。但是,当前方法无法解决网络中的均值和方差漂移问题。当前方法大多采用 feature normalization(FN) 进行训练,这些FN方法大多在空间维度上进行归一化,忽略了损坏区域对归一化的影响。

在这篇论文中,作者提出Region normalization(RN)来解决上述问题。根据输入的mask将像素划分为不同的区域,并计算每个区域的均值和方差来实现归一化。

RN算法的思想比较容易懂,如上图所示:绿色部分代表损坏的数据、红色部分代表未损坏的数据,两部分数据分别归一化。

在实现细节上,作者提出两种RN,一个是basic RN,另一个是learnable RN。basic RN如下图所示。对未损坏区域、损坏区域分别归一化,然后会有两组affine transformation参数。在网络的前面几层中,输入图像具有较大的损坏区域,会导致严重的均值和方差漂移。因此,使用RN-B通过分区域归一化来解决这一问题。

经过多个卷积层以后,未损坏区域和损坏区域会融合在一起,这时仍然使用region mask就不可靠了。这个时候,使用RN-L,利用输入特征的空间关系来检测损坏区域,为RN生成region mask。RN-L如下图所示,首先使用 maxpool 和 avgpool 得到两个feature map并拼接在一起。然后使用sigmoid函数得到一个spatial response map。最后,通过阈值得到 region mask。在论文里,\(t=0.8\)。

作者使用了 EdgeConnect 方法的架构。(EdgeConnect包括一个 edge generator 和一个 image generator),在本文中,作者使用了 image generator 做为基础网络。同时,作者把 instance normalization 替换为 RN, RN-B, RN-L. 整体架构如下图所示。

值得注意的是,作者所提出的两种RN是即插即用模块,可以方便地应用于其他图像修复网络。

Region Normalization for Image Inpainting, AAAI 2020的更多相关文章

  1. 京东云与AI 10 篇论文被AAAI 2020 收录,京东科技实力亮相世界舞台

    美国时间2月7-12日,AAAI 2020大会在纽约正式拉开序幕,AAAI作为全球人工智能领域的顶级学术会议,每年评审并收录来自全球最顶尖的学术论文,这些学术研究引领着技术的趋势和未来.京东云与AI在 ...

  2. AAAI 2020论文分享:通过识别和翻译交互打造更优的语音翻译模型

    2月初,AAAI 2020在美国纽约拉开了帷幕.本届大会百度共有28篇论文被收录.本文将对其中的机器翻译领域入选论文<Synchronous Speech Recognition and Spe ...

  3. Infrared-Visible Cross-Modal Person Re-Identification with an X Modality (AAAI 2020)

    Infrared-Visible Cross-Modal Person Re-Identification with an X Modality (AAAI 2020) 1. Motivation 可见 ...

  4. Spiking-YOLO : 前沿性研究,脉冲神经网络在目标检测的首次尝试 | AAAI 2020

    论文提出Spiking-YOLO,是脉冲神经网络在目标检测领域的首次成功尝试,实现了与卷积神经网络相当的性能,而能源消耗极低.论文内容新颖,比较前沿,推荐给大家阅读   来源:晓飞的算法工程笔记 公众 ...

  5. AAAI 2020 | 反向R?削弱显著特征为细粒度分类带来提升

    论文提出了类似于dropout作用的diversification block,通过抑制特征图的高响应区域来反向提高模型的特征提取能力,在损失函数方面,提出专注于top-k类别的gradient-bo ...

  6. AAAI 2020 | DIoU和CIoU:IoU在目标检测中的正确打开方式

    论文提出了IoU-based的DIoU loss和CIoU loss,以及建议使用DIoU-NMS替换经典的NMS方法,充分地利用IoU的特性进行优化.并且方法能够简单地迁移到现有的算法中带来性能的提 ...

  7. 2020年AI、CV、NLP顶会最全时间表

    2020年AI.CV.NLP顶会最全时间表 2019-09-01 14:04:19 weixin_38753768 阅读数 40   2020 AI.CV.NLP主流会议时间表,包含会议举办的时间.地 ...

  8. 论文翻译:2021_MetricGAN+: An Improved Version of MetricGAN for Speech Enhancement

    论文地址:MetricGAN+:用于语音增强的 MetricGAN 的改进版本 论文代码:https://github.com/JasonSWFu/MetricGAN 引用格式:Fu S W, Yu ...

  9. Consistency Regularization for GANs

    目录 概 主要内容 Zhang H., Zhang Z., Odena A. and Lee H. CONSISTENCY REGULARIZATION FOR GENERATIVE ADVERSAR ...

随机推荐

  1. Git【入门】这一篇就够了

    前言 欢迎关注公众号,白嫖原创PDF,也可以催更,微信搜:JavaPub,回复:[666] Git 在生产工作中是使用频率很高的工具,但我发现很多文章只是对它做了简单的提交命令说明,真正遇到 版本冲突 ...

  2. Win8.1卸载64位Oracle Database 11g的详细图文步骤记录

    Oracle Database 11g在Win8 上的卸载过程记录. Step1停用oracle服务:进入计算机管理/任务管理器,在服务中,找到oracle开头的所有服务,右击选择停止: Step2 ...

  3. 入门大数据---Kafka生产者详解

    一.生产者发送消息的过程 首先介绍一下 Kafka 生产者发送消息的过程: Kafka 会将发送消息包装为 ProducerRecord 对象, ProducerRecord 对象包含了目标主题和要发 ...

  4. VS2017 快捷键

    VS2017注释:先CTRL+K 然后CTRL+C   (ctrl按住不松,松开k按c) 取消注释:先CTRL+K,然后CTRL+U  (ctrl按住不松,松开k按c)

  5. 手写SpringMVC框架(三)-------具体方法的实现

    续接前文 手写SpringMVC框架(二)结构开发设计 本节我们来开始具体方法的代码实现. doLoadConfig()方法的开发 思路:我们需要将contextConfigLocation路径读取过 ...

  6. 博弈论 | 详解搞定组合博弈问题的SG函数

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天这篇是算法与数据结构专题的第27篇文章,我们继续深入博弈论问题.今天我们要介绍博弈论当中非常重要的一个定理和函数,通过它我们可以解决许多 ...

  7. kubernetes系列(十三) - 存储之Volume

    1. Volume简介 1.1 k8s的volume和docker的volume区别 1.2 kubernetes支持的volume类型 2. 重点的volume类型 2.1 emptyDir 2.1 ...

  8. vue组件通讯之provide / inject

    什么是 provide / inject [传送门] vue的组件通讯方式我们熟知的有 props $emit bus vuex ,另外就是 provide/inject provide/inject ...

  9. 数据可视化之powerBI技巧(五)在Power BI中写出优雅的度量值是什么体验?

    之前的文章(采悟:连接表的几个DAX函数,一次全掌握)介绍了产品A的客户与产品B的客户的各种交叉关系,其中最常用的应该是找出A和B的共同客户,以便进行产品关联分析. 之前的思路是计算出两个产品的共同客 ...

  10. HTML学习分享(一)

    HTML学习小结(一) 1.css的全称是什么? 2.样式表的组成 3.浏览器读取编译css的顺序? (1)HTML基本选择器 1.通配符选择器 * { margin: 0; padding: 0; ...