什么是滑动窗口(Sliding Window)

The Sliding Problem contains a sliding window which is a sub – list that runs over a Large Array which is an underlying collection of elements.

滑动窗口算法可以用以解决数组/字符串的子元素问题,它可以将嵌套的循环问题,转换为单循环问题,降低时间复杂度。

比如找最长的全为1的子数组长度。滑动窗口一般从第一个元素开始,一直往右边一个一个元素挪动。当然了,根据题目要求,我们可能有固定窗口大小的情况,也有窗口的大小变化的情况。

如何判断使用滑动窗口算法

如果题目中求的结果有以下情况时可使用滑动窗口算法:

  • 最小值 Minimum value
  • 最大值 Maximum value
  • 最长值 Longest value
  • 最短值 Shortest value
  • K值 K-sized value

算法模板与思路

/* 滑动窗口算法框架 */
void slidingWindow(string s, string t) {
unordered_map<char, int> need, window;
for (char c : t) need[c]++; int left = 0, right = 0;
int valid = 0;
while (right < s.size()) {
// c 是将移入窗口的字符
char c = s[right];
// 右移窗口
right++;
// 进行窗口内数据的一系列更新
... /*** debug 输出的位置 ***/
printf("window: [%d, %d)\n", left, right);
/********************/ // 判断左侧窗口是否要收缩
while (window needs shrink) {
// d 是将移出窗口的字符
char d = s[left];
// 左移窗口
left++;
// 进行窗口内数据的一系列更新
...
}
}
}

滑动窗口算法的思路:

  1. 在字符串 S 中使用双指针中的左右指针技巧,初始化 left = right = 0 ,把索引左闭右开区间 [left, right) 称为一个「窗口」。
  2. 不断地增加 right 指针扩大窗口 [left, right) ,直到窗口中的字符串符合要求(包含了 T 中的所有字符)。
  3. 此时停止增加 right ,转而不断增加 left 指针缩小窗口 [left, right) ,直到窗口中的字符串不再符合要求(不包含 T 中的所有字符了)。同时,每次增加 left ,都要更新一轮结果。
  4. 重复第2和第3步,直到 right 到达字符串 S 的尽头。

needswindow 相当于计数器,分别记录 T 中字符出现次数和「窗口」中的相应字符的出现次数。

开始套模板之前,要思考以下四个问题:

  1. 当移动 right 扩大窗口,即加入字符时,应该更新哪些数据?
  2. 什么条件下,窗口应该暂停扩大,开始移动_left_ 缩小窗口?
  3. 当移动 left 缩小窗口,即移出字符时,应该更新哪些数据?
  4. 我们要的结果应该在扩大窗口时还是缩小窗口时进行更新?

滑动窗口问题实例

最小覆盖子串

LeetCode题目:76.最小覆盖子串

1、阅读且分析题目

题目中包含关键字:时间复杂度O(n)字符串最小子串。可使用滑动窗口算法解决。

2. 思考滑动窗口算法四个问题

1、当移动 right 扩大窗口,即加入字符时,应该更新哪些数据?

更新 window 中加入字符的个数,判断 needwindow 中的字符个数是否相等,相等则 valid++

2、什么条件下,窗口应该暂停扩大,开始移动_left_ 缩小窗口?

window 包含 need 中的字符及个数时,即 valid == len(need)

3、当移动 left 缩小窗口,即移出字符时,应该更新哪些数据?

更新 window 中移出字符的个数,且判断 needwindow 中的移出字符个数是否相等,相等则 valid--

4、我们要的结果应该在扩大窗口时还是缩小窗口时进行更新?

在缩小窗口时,因为求的是最小子串。

3. 代码实现

func minWindow(s string, t string) string {
need, window := make(map[byte]int), make(map[byte]int)
for i := 0; i < len(t); i++ { // 初始化 need
if _, ok := need[t[i]]; ok {
need[t[i]]++
} else {
need[t[i]] = 1
}
} left, right, valid := 0, 0, 0
start, slen := 0, len(s)+1 // 设置长度为 len(s) + 1 表示此时没有符合条件的子串
for right < len(s) { // 滑动窗口向右扩大
c := s[right]
right++ if _, ok := need[c]; ok { // 向右扩大时,更新数据
if _, ok := window[c]; ok {
window[c]++
} else {
window[c] = 1
} if window[c] == need[c] {
valid++
}
} for valid == len(need) { // 当窗口包括 need 中所有字符及个数时,缩小窗口 if right-left < slen { // 缩小前,判断是否最小子串
start = left
slen = right - left
} d := s[left]
left++ if v, ok := need[d]; ok { // 向左缩小时,更新数据
if window[d] == v {
valid--
}
window[d]--
}
}
} if slen == len(s)+1 { // 长度 len(s) + 1 表示此时没有符合条件的子串
return ""
} else {
return s[start : start+slen]
}
}

4. 复杂度分析

  • 时间复杂度:O(n)n 表示字符串 s 的长度。遍历一次字符串。
  • 空间复杂度:O(m)m 表示字符串 t 的长度。使用了两个哈希表,保存字符串 t 中的字符个数。

字符串排列

LeetCode题目:567.字符串的排列

1、阅读且分析题目

题目中包含关键字:字符串子串,且求 s2 中是否包含 s1 的排列,即求是否包含长度 k 的子串。可使用滑动窗口算法解决。

2. 思考滑动窗口算法四个问题

1、当移动 right 扩大窗口,即加入字符时,应该更新哪些数据?

更新 window 中加入字符的个数,判断 needwindow 中的字符个数是否相等,相等则 valid++

2、什么条件下,窗口应该暂停扩大,开始移动_left_ 缩小窗口?

window 包含 need 中的字符及个数时,即 valid == len(need)

3、当移动 left 缩小窗口,即移出字符时,应该更新哪些数据?

更新 window 中移出字符的个数,且判断 needwindow 中的移出字符个数是否相等,相等则 valid--

4、我们要的结果应该在扩大窗口时还是缩小窗口时进行更新?

无论在扩大时或缩小窗口时都可以,因为求的是固定长度的子串。选择在缩小窗口时更新。

3. 代码实现

func checkInclusion(s1 string, s2 string) bool {
if s1 == s2 {
return true
} need, window := make(map[byte]int), make(map[byte]int) for i := 0; i < len(s1); i++ {
if _, ok := need[s1[i]]; ok {
need[s1[i]]++
} else {
need[s1[i]] = 1
}
} left, right := 0, 0
valid := 0 for right < len(s2) {
c := s2[right]
right++ if _, ok := need[c]; ok {
if _, ok := window[c]; ok {
window[c]++
} else {
window[c] = 1
}
if window[c] == need[c] {
valid++
}
} for valid == len(need) { if right-left == len(s1) {
return true
} d := s2[left]
left++ if _, ok := need[d]; ok {
if _, ok := window[d]; ok {
if window[d] == need[d] {
valid--
}
window[d]--
}
}
}
} return false
}

4. 复杂度分析

  • 时间复杂度:O(n)n 表示字符串 s2 的长度。遍历一次字符串。
  • 空间复杂度:O(m)m 表示字符串 s1 的长度。使用了两个哈希表,保存字符串 s1 中的字符个数。

找所有字母异位词

LeetCode题目:438.找到字符串中所有字母异位词

1、阅读且分析题目

题目中包含关键字:字符串,且求 s 中的所有 p 的字母异位词的子串。可使用滑动窗口算法解决。

2. 思考滑动窗口算法四个问题

1、当移动 right 扩大窗口,即加入字符时,应该更新哪些数据?

更新 window 中加入字符的个数,判断 needwindow 中的字符个数是否相等,相等则 valid++

2、什么条件下,窗口应该暂停扩大,开始移动_left_ 缩小窗口?

window 包含 need 中的字符及个数时,即 valid == len(need)

3、当移动 left 缩小窗口,即移出字符时,应该更新哪些数据?

更新 window 中移出字符的个数,且判断 needwindow 中的移出字符个数是否相等,相等则 valid--

4、我们要的结果应该在扩大窗口时还是缩小窗口时进行更新?

无论在扩大时或缩小窗口时都可以,因为求的是固定长度的子串。选择在缩小窗口时更新。

3. 代码实现

func findAnagrams(s string, p string) []int {
need, window := make(map[byte]int), make(map[byte]int)
for i := 0; i < len(p); i++ { // 初始化
if _, ok := need[p[i]]; ok {
need[p[i]]++
} else {
need[p[i]] = 1
}
} left, right := 0, 0
valid := 0 ans := make([]int, 0) for right < len(s) {
c := s[right]
right++ if _, ok := need[c]; ok {
if _, ok := window[c]; ok {
window[c]++
} else {
window[c] = 1
}
if need[c] == window[c] {
valid++
}
} for valid == len(need) {
if right-left == len(p) {
ans = append(ans, left)
} d := s[left]
left++ if _, ok := need[d]; ok {
if _, ok := window[d]; ok {
if need[d] == window[d] {
valid--
}
window[d]--
}
}
}
} return ans
}

4. 复杂度分析

  • 时间复杂度:O(n)n 表示字符串 s 的长度。遍历一次字符串。
  • 空间复杂度:O(m)m 表示字符串 p 的长度。使用了两个哈希表,保存字符串 p 中的字符个数。

最长无重复子串

LeetCode题目:3. 无重复字符的最长子串

1、阅读且分析题目

题目中包含关键字:时间复杂度O(n)字符串最小子串。可使用滑动窗口算法解决。

2. 思考滑动窗口算法四个问题

1、当移动 right 扩大窗口,即加入字符时,应该更新哪些数据?

更新 window 中加入字符的个数,及当 window 中的某个字符个数 == 2时,更新 valid == false

2、什么条件下,窗口应该暂停扩大,开始移动_left_ 缩小窗口?

window 中的字符及个数 == 2时,即 valid == false

3、当移动 left 缩小窗口,即移出字符时,应该更新哪些数据?

更新 window 中移出字符的个数,且判断 window 中移出字符个数是否 == 2 ,相等则 valid == true

4、我们要的结果应该在扩大窗口时还是缩小窗口时进行更新?

在扩大窗口时,因为求的是最大子串。

3. 代码实现

func lengthOfLongestSubstring(s string) int {
if s == "" { // 当字符串为空时,返回0
return 0
} window := make(map[byte]int) left, right, max := 0, 0, 0
valid := true for right < len(s) {
c := s[right]
right++ if _, ok := window[c]; !ok { // 初始化
window[c] = 0
}
window[c]++ // 累加
if window[c] == 2 { // 当出现重复字符时
valid = false
} else { // 否则累加不重复子串长度,并且判断是否当前最长
if max < right-left {
max = right - left
}
} for valid == false {
d := s[left]
left++ if window[d] == 2 {
valid = true
}
window[d]--
}
}
return max
}

4. 复杂度分析

  • 时间复杂度:O(n)n 表示字符串 s 的长度。遍历一次字符串。
  • 空间复杂度:O(n)n 表示字符串 s 的长度。使用了哈希表,保存不重复的字符个数。

总结

  • 滑动窗口算法可以用以解决数组/字符串的子元素问题,它可以将嵌套的循环问题,转换为单循环问题,降低时间复杂度。
  • 问题中包含字符串子元素、最大值、最小值、最长、最短、K值等关键字时,可使用滑动窗口算法。
  • 模板中的向左和向右时的处理是对称的。
  • 套模板前思考四个问题:
    1. 当移动 right 扩大窗口,即加入字符时,应该更新哪些数据?
    2. 什么条件下,窗口应该暂停扩大,开始移动_left_ 缩小窗口?
    3. 当移动 left 缩小窗口,即移出字符时,应该更新哪些数据?
    4. 我们要的结果应该在扩大窗口时还是缩小窗口时进行更新?

参考资料

滑动窗口(Sliding Window)技巧总结的更多相关文章

  1. LeetCode编程训练 - 滑动窗口(Sliding Window)

    滑动窗口基础 滑动窗口常用来解决求字符串子串问题,借助map和计数器,其能在O(n)时间复杂度求子串问题.滑动窗口和双指针(Two pointers)有些类似,可以理解为往同一个方向走的双指针.常用滑 ...

  2. 算法与数据结构基础 - 滑动窗口(Sliding Window)

    滑动窗口基础 滑动窗口常用来解决求字符串子串问题,借助map和计数器,其能在O(n)时间复杂度求子串问题.滑动窗口和双指针(Two pointers)有些类似,可以理解为往同一个方向走的双指针.常用滑 ...

  3. TCP滑动窗口Sliding Window

    滑动窗口的发送窗口示意图如下,其中由对端通告的窗口窗口大小为6,窗口中和窗口外的数据分别表示为:1-3发送并已经被确认的数据段,4-6发送但尚未被确认的数据段,7-9能够发送尚未发送的数据段,10-… ...

  4. [POJ2823][洛谷P1886]滑动窗口 Sliding Window

    题目大意:有一列数,和一个窗口,一次能框连续的s个数,初始时窗口在左端,不断往右移动,移到最右端为止,求每次被框住的s个数中的最小数和最大数. 解题思路:这道题是一道区间查询问题,可以用线段树做.每个 ...

  5. [Leetcode 3] 最长不重复子串 Longest substring without repeating 滑动窗口

    [题目] Given a string, find the length of the longest substring without repeating characters. [举例] Exa ...

  6. POJ 2823 滑动窗口 单调队列模板

    我们从最简单的问题开始: 给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k. 要求: f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0 ...

  7. 一维滑动窗口(SlidingWindow)

    滑动窗口(Sliding Window)问题经常使用快慢指针(slow, fast pointer)[0, slow) 的区域为滑动窗口已经探索过的区域[slow, fast]的区域为滑动窗口正在探索 ...

  8. Storm Windowing storm滑动窗口简介

    Storm Windowing 简介 Storm可同时处理窗口内的所有tuple.窗口可以从时间或数量上来划分,由如下两个因素决定: 窗口的长度,可以是时间间隔或Tuple数量: 滑动间隔(slidi ...

  9. [LeetCode] Sliding Window Maximum 滑动窗口最大值

    Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...

随机推荐

  1. Blob分析之 ball.hdev

    * ball.hdev: Inspection of Ball Bonding * 关闭窗体更新 dev_update_window ('off')*关闭窗体dev_close_window ()*打 ...

  2. UOJ 422 [集训队作业2018] 小Z的礼物 min-max容斥 期望 轮廓线dp

    LINK:小Z的礼物 太精髓了 我重学了一遍min-max容斥 重写了一遍按位或才写这道题的. 还是期望多少时间可以全部集齐. 相当于求出 \(E(max(S))\)表示最后一个出现的期望时间. 根据 ...

  3. 9 16 模拟赛&关于线段树上二分总结

    1 考试时又犯了一个致命的错误,没有去思考T2的正解而是去简单的推了一下式子开始了漫漫找规律之路,不应该这样做的 为了得到规律虽然也打了暴力 但是还是打了一些不必要的程序 例如求组合数什么的比较浪费时 ...

  4. Docker学习日记-安装Docker

    Docker是什么: 简单理解就是基于go语言开发的开源的应用容器引擎. 对进程进行封装隔离,属于操作系统层面的虚拟化技术. Docker的优势: 1.更高效的利用系统资源 2.更快速的启动时间 3. ...

  5. MyBatis-Plus使用(1)-概述+代码生成器

    MyBatis-Plus(简称 MP)是一个 MyBatis 的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发.提高效率而生. 官网:https://mp.baomidou.com ...

  6. 【HNOI2009】最小圈 题解(SPFA判负环+二分答案)

    前言:模拟赛考试题,不会做,写了个爆搜滚蛋仍然保龄. --------------------- 题目链接 题目大意:给定一张有向图,求一个环,使得这个环的长度与这个环的大小(所含结点个数)的比值最小 ...

  7. DataGrip 2020.1 安装与激活

    1 软件下载 百度网盘: 链接:https://pan.baidu.com/s/1kHSq1XS0i4YDF0HuzsxCLg 提取码:djyc 2 安装 解压文件后点击 datagrip-2020. ...

  8. Github获8300星!用Python开发的一个命令行的网易云音乐

    最近在逛Github发现了一个非常有趣的库musicbox,是用纯Python打造的,收获了8300颗星.Python语言简单易学,好玩有趣,身边越来越多的小伙伴都开始学习Python.她的魅力非常大 ...

  9. NIO(一):Buffer缓冲区

    一.NIO与IO: IO:  一般泛指进行input/output操作(读写操作),Java IO其核心是字符流(inputstream/outputstream)和字节流(reader/writer ...

  10. flask-sqlalchemy同字段多条件过滤

    举例 from sqlalchemy import or_,and_# from operator import or_, and_ allapp = AppServer.query.filter(a ...