题目描述

某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。

输入导弹依次飞来的高度(雷达给出的高度数据是≤50000 \le 50000≤50000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。

输入输出格式

输入格式:

111行,若干个整数(个数≤100000 \le 100000≤100000)

输出格式:

222行,每行一个整数,第一个数字表示这套系统最多能拦截多少导弹,第二个数字表示如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。

输入输出样例

输入样例#1:
复制

389 207 155 300 299 170 158 65
输出样例#1: 复制

6
2

求最长不下降子序列需要做的是如果要插入的<=d[l]的数值 则直接插入 如果不是 则在d中找到第一个比他小的然后替换掉 这时候用到了upper_bound(d,d+l,greater<int>)-d;
从而就可以求出来
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<vector>
#include<cmath>
#define Inf 0x3f3f3f3f const int maxn=1e5+;
typedef long long ll;
using namespace std; int a[maxn];
int d[maxn],d2[maxn];
int main()
{
int len=;
int x;
while(scanf("%d",&x)!=EOF)
{
a[len++]=x;
}
d[]=a[];
d2[]=a[];
int l=,l2=;
for(int t=;t<len;t++)
{
if(a[t]<=d[l])
{
d[l+]=a[t];
l++;
}
else
{
int pos=upper_bound(d,d+l,a[t],greater<int>())-d;
d[pos]=a[t];
}
if(a[t]>d2[l2])
{
d2[l2+]=a[t];
l2++;
}
else
{
int pos=lower_bound(d2,d2+l2,a[t])-d2;
d2[pos]=a[t];
}
}
cout<<l+<<" "<<l2+<<endl;
}

P1020 导弹拦截(nlogn求最长不下降子序列)的更多相关文章

  1. 算法进阶 (LIS变形) 固定长度截取求最长不下降子序列【动态规划】【树状数组】

    先学习下LIS最长上升子序列 ​ 看了大佬的文章OTZ:最长上升子序列 (LIS) 详解+例题模板 (全),其中包含普通O(n)算法*和以LIS长度及末尾元素成立数组的普通O(nlogn)算法,当然还 ...

  2. JDOJ 1946 求最长不下降子序列个数

    Description 设有一个整数的序列:b1,b2,…,bn,对于下标i1<i2<…<im,若有bi1≤bi2≤…≤bim 则称存在一个长度为m的不下降序列. 现在有n个数,请你 ...

  3. HDU 1025 Constructing Roads In JGShining's Kingdom[动态规划/nlogn求最长非递减子序列]

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  4. 求最长不下降子序列(nlogn)

    最长递增子序列问题:在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]<a[j],这样最长的子序列称为最长递增子序列. 设dp[i]表示以i为结尾的最长 ...

  5. Monkey and Banana(dp,求最长的下降子序列)

    A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a bana ...

  6. nlogn的最长不下降子序列【tyvj1254挑选士兵】

    var a,d:Array[-..]of longint; i,n,m,k,l:longint; function erfen(x:longint):longint; var mid,h,t:long ...

  7. 【题解】P1020 导弹拦截

    [题解]P1020 导弹拦截 从n^2到nlogn 第二问就是贪心,不多说 第一问: 简化题意:求最长不下降子序列 普通n^2: for (int i = 1; i <= n; i++) for ...

  8. Luogu 1020 导弹拦截(动态规划,最长不下降子序列,二分,STL运用,贪心,单调队列)

    Luogu 1020 导弹拦截(动态规划,最长不下降子序列,二分,STL运用,贪心,单调队列) Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺 ...

  9. tyvj 1049 最长不下降子序列 n^2/nlogn

    P1049 最长不下降子序列 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数第二行n个数 输出格式 ...

随机推荐

  1. Qt编译出现cc1plus.exe: out of memory allocating 65536 bytes问题

    今天编译Qt程序,出现这个问题: cc1plus.exe: out of memory allocating 65536 bytes 这个还没有遇到过,上网查了下.问题原因是资源文件过大. qt的资源 ...

  2. Java高级篇XML和正则表达式

    常见的XML解析技术: 1.DOM(基于XML树结构,比较耗资源,适用于多次访问XML): 2.SAX(基于事件,消耗资源小,适用于数量较大的XML): 3.JDOM(比DOM更快,JDOM仅使用具体 ...

  3. idea只导入部分依赖

    首先为啥会导入部分依赖的呢? 可能是网络问题下载不下来,可以排除这一个,因为刚换的merrio阿里的源,而且之前都能下载 也可能是maven的设置问题,上网上搜了一些设置之后,还是不管用 然后怀疑是不 ...

  4. 在Springboot中写使用jsp

    jsp其实可以看成一种模板语言,在Springboot中我们同样可以使用jsp.我们可以把引入jsp的过程分为三步: 第一步:POM文件加依赖: <!--引入springboot内嵌的tomca ...

  5. 用Java制作斗地主

    首先,按照斗地主规则,完成洗牌发牌的动作.如图: 具体规则: 1. 组装54张扑克牌 2. 将54张牌顺序打乱 3. 三个玩家参与游戏,三人交替摸牌,每人17张牌,最后三张留作底牌. 4. 查看三人各 ...

  6. C#设计模式之22-模板方法模式

    模板方法模式(Template Method Pattern) 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/429 访 ...

  7. 漏洞重温之XSS(中)

    漏洞重温之XSS(中) XSS挑战之旅 level8-level13 level8 第八关开局,发现button从搜索变成了友情链接,发现该页面情况跟前面不同,先右键查看代码,再进行尝试. 上测试代码 ...

  8. GaussDB连接与登出

    连接 连接命令1: gsql -d ${dbName} -U ${userName} -p {port:默认为25308} -h {ip} -W {password} 连接命令2: gsql -d p ...

  9. MySQL查看数据存放位置

    show global variables like "%datadir%";

  10. 深度优先搜索(dfs)与出题感想

    在3月23号的广度优先搜索(bfs)博客里,我有提到写一篇深搜博客,今天来把这个坑填上. 第一部分:深度优先搜索(dfs) 以上来自百度百科. 简单来说,深度优先搜索算法就是——穷举法,即枚举所有情况 ...