「LOJ 538」「LibreOJ NOIP Round #1」数列递推
description
- sosusosu 虐爆 OI 之后成为了一名文化课选手。一天,他做作业碰到了一堆数列问题,每道题给出的数列都是以下形式:
给定一个下标从\(0\)开始,无限长的整数列\({a_{i}}\),\(i \in N\) ,已知\(a_{0},a_{1}\) 的值,以及递推式\(a_{i+2}=ka_{i+1}+a_{i}\),\(i \in N\) ,\(k \in N^+\)。
- sosusosu 研究了这些数列,发现它们十分优美充满人类智慧,于是决定出一道 OI 题。
- sosusosu 给了你一个集合 \(S\subset N\),他想问你对于\(S\)中的每个数\(s_i\),使得\(a_{s_{i}}\)最大的\(s_{i}\)使得\(a_{s_{i}}\)最小的\(s_{i}\)分别是多少。如果这样的\(s_{i}\)有多个,请你回答最小的一个。
- 另外,sosusosu 准备对他作业中碰到的每个数列都让你回答一次,不过每次的集合\(S\)是一样的。
- 数列数量\(n\le3*10^5\),\(S\)中的元素个数\(m\le 10^5\)
solution
- 手玩几组样例,可以得到一个结论:序列在经过某一个临界点之后会变成单调递增或单调递减,且最多只有前\(log_2{k}\)个数是不单调的,请读者自证我太菜了不会证明
- 故暴力判断前\(log_2{k}\)个数,然后根据序列的单调性判断\(S\)中最大的一个数是最大值还是最小值即可
- 注意如果前\(log_2{k}\)个数中没有任何一个在\(S\)中,那么答案就会是\(S_1\),需要特判
code
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*f;
}
const int N=3e5+10;
const int M=1e5+10;
int m,n,s[M],w[M];
ll a[N];
int main(){
// freopen("ex_seq4.in","r",stdin);
m=read();
for(int i=1;i<=m;++i){
s[i]=read();
}
n=read();
while(n--){
a[0]=read();a[1]=read();
int k=read();
int fi=min(100,s[m]);
ll mx=-1e16,mn=1e16;
int mxp=-1,mnp=-1;
for(int i=2;i<=fi;++i){
a[i]=1ll*k*a[i-1]+a[i-2];
if(a[i]>1e15&&a[i-1]>=0&&a[i-2]>=0&&a[i]>=0){fi=i;break;}
if(a[i]<-1e15&&a[i-1]<=0&&a[i-2]<=0&&a[i]<=0){fi=i;break;}
}
for(int i=1;i<=m;++i){
if(s[i]<fi){
if(a[s[i]]>mx) mx=a[s[i]],mxp=s[i];
if(a[s[i]]<mn) mn=a[s[i]],mnp=s[i];
}
else break;
}
if(a[fi]>mx&&a[fi]>0)mxp=s[m];
if(a[fi]<mn&&a[fi]<0)mnp=s[m];
if(mxp==-1)mxp=s[1];
if(mnp==-1)mnp=s[1];
printf("%d %d\n",mxp,mnp);
}
return 0;
「LOJ 538」「LibreOJ NOIP Round #1」数列递推的更多相关文章
- 【LibreOJ】#538. 「LibreOJ NOIP Round #1」数列递推
[题意]LibreOJ [算法]乱搞 [题解]容易发现数列最后一定单调,最后单调递增则最大值赋为最后一个,反之最小值赋为最后一个,然后处理一些细节就可以AC,要注意以下几点: 1.数列连续三项以及数列 ...
- 「LOJ 537」「LibreOJ NOIP Round #1」DNA 序列
description NOIP 复赛之前,HSD 桑进行了一项研究,发现人某条染色体上的一段 DNA 序列中连续的\(k\)个碱基组成的碱基序列与做题的 AC 率有关!于是他想研究一下这种关系. 现 ...
- LOJ#539. 「LibreOJ NOIP Round #1」旅游路线
n<=100,m<=1000的图,在此图上用油箱容量C<=1e5的车来旅行,旅行时,走一条边会耗一单伟油,在点i时,若油量<ci,则可以把油以pi的价格补到ci,pi<= ...
- LOJ#541. 「LibreOJ NOIP Round #1」七曜圣贤
有一辆车一开始装了编号0-a的奶茶,现有m次操作,每次操作Pi在[-1,b),若Pi为一个未出现过编号的奶茶,就把他买了并装上车:若Pi为一个在车上的奶茶,则把他丢下车:否则,此次操作为捡起最早丢下去 ...
- LOJ #539. 「LibreOJ NOIP Round #1」旅游路线 倍增floyd + 思维
考试的时候是这么想的: 求出每一个点花掉 $i$ 的花费向其他点尽可能走的最长距离,然后二分这个花费,找到第一个大于 $d$ 的就输出$.$然而,我这个记忆化搜索 $TLE$ 的很惨$.$这里讲一下正 ...
- 「LOJ 541」「LibreOJ NOIP Round #1」七曜圣贤
description 题面很长,这里给出题目链接 solution 用队列维护扔掉的红茶,同时若后扔出的红茶比先扔出的红茶编号更小,那么先扔出的红茶不可能成为答案,所以可以用单调队列维护 故每次询问 ...
- 「LOJ 539」「LibreOJ NOIP Round #1」旅游路线
description 题面较长,这里给出题目链接 solution 考虑预处理出\(f[i][j]\)表示在第\(i\)个点加满油后,从第\(i\)个点出发,至多消耗\(j\)元钱走过的最大路程,那 ...
- 题解【loj537】「LibreOJ NOIP Round #1」DNA 序列
题目描述 \(NOIP\)复赛之前\(HSD\)桑进行了一项研究,发现人某条染色体上的一段\(DNA\)序列中连续的\(k\)个碱基组成的碱基序列与做题的 \(AC\) 率有关!于是他想研究一下这种关 ...
- <题解>「LibreOJ NOIP Round #1」序列划分
solutions 题面loj#542 对我来说,这或许已经超出了我的能力,我,只能看题解 不知道我写完这一篇题解之后,会不会对我的构造题有一点点的帮助 让我在这类题的解决上能过有一些提升 直接说明白 ...
随机推荐
- drf ( 学习第四部 )
目录 DRF框架中常用的组件 分页Pagination 异常处理Exceptions 自动生成接口文档 安装依赖 设置接口文档访问路径 访问接口文档网页 Admin 列表页配置 详情页配置 Xadmi ...
- Semaphore(信号灯)
public class SemaphoreDemo { public static void main(String[] args) { //三个停车位 Semaphore sp = new Sem ...
- HBase进阶
date: 2020-10-26 15:43:00 updated: 2020-10-26 18:45:00 HBase进阶 1. 架构 master负责管理多个region server,一个reg ...
- CTF:sctf_2019_easy_heap
这个题目当时比赛的时候靶机据说是ubuntu16.04,但是迁移到buu上就变成了ubuntu18.04,下面针对两个平台给出不同的解法,先写一下18.04下的 先来逆一下,关键点有一下几个 mmap ...
- 一篇理解什么是CanSet, CanAddr?
什么是可设置( CanSet ) 首先需要先明确下,可设置是针对 reflect.Value 的.普通的变量要转变成为 reflect.Value 需要先使用 reflect.ValueOf() 来进 ...
- Redis学习笔记(三)——数据结构之字符串(String)
一.介绍 String类型,是二进制安全的,存入和获取的数据相同,value最多可以容纳的数据长度是512M,可以存放json数据,图像数据等等. 存储String常用命令: 赋值(set) 取值(g ...
- c语言创建dll以及使用
0x01. declspec(dllexport)创建导出dll 笔者这边使用vs 2015,但是性质都一样的 新建项目 -> Win32控制台应用程序 -> dll 这时候就创建了一个项 ...
- python pickle 模块的使用详解
用于序列化的两个模块 json:用于字符串和Python数据类型间进行转换 pickle: 用于python特有的类型和python的数据类型间进行转换 json提供四个功能:dumps,dump,l ...
- NB-IoT的低功耗是怎么实现的?
NB-IoT的低功耗是怎么实现的? NB-IoT可以实现低功耗的一个主要原因就是NB-IoT设备的用户终端在省电模式下依然可以工作,这种工作模式可以极大的降低电量的消耗和延长电池使用寿命.在省电模式下 ...
- [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)
题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...