Rebuilding Roads
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 11495   Accepted: 5276

Description

The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, number 1..N) after the terrible earthquake last May. The cows didn't have time to rebuild any extra roads, so now there is exactly one way to get from any given barn to any other barn. Thus, the farm transportation system can be represented as a tree.

Farmer John wants to know how much damage another earthquake could do. He wants to know the minimum number of roads whose destruction would isolate a subtree of exactly P (1 <= P <= N) barns from the rest of the barns.

Input

* Line 1: Two integers, N and P

* Lines 2..N: N-1 lines, each with two integers I and J. Node I is node J's parent in the tree of roads.

Output

A single line containing the integer that is the minimum number of roads that need to be destroyed for a subtree of P nodes to be isolated. 

Sample Input

11 6
1 2
1 3
1 4
1 5
2 6
2 7
2 8
4 9
4 10
4 11

Sample Output

2

Hint

[A subtree with nodes (1, 2, 3, 6, 7, 8) will become isolated if roads 1-4 and 1-5 are destroyed.] 

Source


题意:给定一棵节点数为n的树,问从这棵树最少删除几条边使得某棵子树的节点个数为p

一开始想了个倒着选了几条边,其实正着也可以,先d[i][1]=子节点数量
d[i][j]表示以i为根的子树节点数为j最少删几条边
注意size要加上自己
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=,INF=1e9;
int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,m,u,v,w,ind[N];
struct edge{
int v,w,ne;
}e[N<<];
int h[N],cnt=;
void ins(int u,int v){
cnt++;
e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;
}
int d[N][N],size[N];
void dfs(int u){
int child=;size[u]=;//!self
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
dfs(v);
size[u]+=size[v];
child++;
}
if(!child) {size[u]=;d[u][]=;return;}//printf("size %d %d\n",u,size[u]); d[u][]=child;
for(int j=;j<=size[u];j++) d[u][j]=INF;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
for(int j=size[u];j>=;j--){
int t=min(j-,size[v]);
for(int k=;k<=t;k++) d[u][j]=min(d[u][j],d[u][j-k]+d[v][k]-);
}
} //for(int i=1;i<=size[u];i++) printf("d %d %d %d\n",u,i,d[u][i]);
}
int main(int argc, const char * argv[]) {
n=read();m=read();
for(int i=;i<=n-;i++){
u=read();v=read();ins(u,v);ind[v]++;
}
int root=-;
for(int i=;i<=n;i++) if(!ind[i]) {root=i;break;}
dfs(root);
int ans=INF;
for(int i=;i<=n;i++) if(size[i]>=m) ans=min(ans,d[i][m]+(i==root?:));
//,printf("ans %d %d\n",i,d[i][m]);
printf("%d",ans);
return ;
}
 

POJ1947 Rebuilding Roads[树形背包]的更多相关文章

  1. POJ1947 - Rebuilding Roads(树形DP)

    题目大意 给定一棵n个结点的树,问最少需要删除多少条边使得某棵子树的结点个数为p 题解 很经典的树形DP~~~直接上方程吧 dp[u][j]=min(dp[u][j],dp[u][j-k]+dp[v] ...

  2. [USACO2002][poj1947]Rebuilding Roads(树形dp)

    Rebuilding RoadsTime Limit: 1000MS Memory Limit: 30000KTotal Submissions: 8589 Accepted: 3854Descrip ...

  3. DP Intro - poj 1947 Rebuilding Roads(树形DP)

    版权声明:本文为博主原创文章,未经博主允许不得转载. Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  4. POJ 1947 Rebuilding Roads 树形DP

    Rebuilding Roads   Description The cows have reconstructed Farmer John's farm, with its N barns (1 & ...

  5. [poj 1947] Rebuilding Roads 树形DP

    Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10653 Accepted: 4884 Des ...

  6. POJ 1947 Rebuilding Roads 树形dp 难度:2

    Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 9105   Accepted: 4122 ...

  7. POJ-1947 Rebuilding Roads (树形DP+分组背包)

    题目大意:将一棵n个节点的有根树,删掉一些边变成恰有m个节点的新树.求最少需要去掉几条边. 题目分析:定义状态dp(root,k)表示在以root为根节点的子树中,删掉一些边变成恰有k个节点的新树需要 ...

  8. POJ1947 Rebuilding Roads(树形DP)

    题目大概是给一棵树,问最少删几条边可以出现一个包含点数为p的连通块. 任何一个连通块都是某棵根属于连通块的子树的上面一部分,所以容易想到用树形DP解决: dp[u][k]表示以u为根的子树中,包含根的 ...

  9. POJ1947 Rebuilding Roads

    Description The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, n ...

随机推荐

  1. 说说&和&&的区别

    &和&&都可以用作逻辑与的运算符,表示逻辑与(and),当运算符两边的表达式的结果都为true 时,整个运算结果才为true,否则,只要有一方为false,则结果为false. ...

  2. Struts2运行流程

    解释:首先浏览器发送一个请求.给/StrutsPrepareAndExecuteFilter调用doFilter()方法.创建/StrutsActionProxy执行execute()方法.有一个引用 ...

  3. SSH(Struts2+Spring+Hibernate)框架搭建流程<注解的方式创建Bean>

    此篇讲的是MyEclipse9工具提供的支持搭建自加包有代码也是相同:用户登录与注册的例子,表字段只有name,password. SSH,xml方式搭建文章链接地址:http://www.cnblo ...

  4. PHP多维数组根据其中一个字段的值排序

    平时简单的一维数组或者简单的数组排序这里就不多作介绍,这里主要是针对平时做项目中的可能遇到的情况,根据多维数组中的其中一个排序.用到的php函数是:array_multisort. 思路:获取其中你需 ...

  5. java基础知识总结(2)

    抽象方法的定义语法: 访问修饰符 abstract <返回类型> <方法名>(参数列表):   在语法中:abstract关键字表示该方法被定义为抽象方法   抽象方法和普通方 ...

  6. Java Class.cast方法

    1.Java api public T cast(Object obj); Casts an object to the class or interface represented 解释的比较笼统, ...

  7. thinkcmf 常用操作

    11-16  thinkcmf 核心文件结构:simplewind--model--lite--model.class.php /controller.class.php Mobile---contr ...

  8. rem计算适配

    git地址:https://github.com/wjf444128852/about-web-rem 建议在CSS引入之前引入下面这段JS代码,比例1rem:100px. 用了这个JS就不用在CSS ...

  9. [SharePoint]javascript client object model 获取lookup 类型的field的值,包括user类型(单人或者多人)的值。how to get the multiple user type/lookup type field value by Javascript client object model

    1. how to get value var context = new SP.ClientContext.get_current(); var web = context.get_web(); v ...

  10. Sharepoint学习笔记—习题系列--70-576习题解析 -(Q131-Q134)

    Question  131 You are designing multiple SharePoint 2010 features. You have the following requiremen ...