中间件面试专题:kafka高频面试问题
开篇介绍
大家好,近期会整理一些Java高频面试题分享给小伙伴,也希望看到的小伙伴在找工作过程中能够用得到!本章节主要针对Java一些消息中间件高频面试题进行分享。
Q1:
什么是消息和批次?
消息,Kafka里的数据单元,也就是我们一般消息中间件里的消息的概念。消息由字节数组组成。消息还可以包含键,用以对消息选取分区。
为了提高效率,消息被分批写入Kafka。
批次,就是一组消息,这些消息属于同一个主题和分区。如果只传递单个消息,会导致大量的网络开销,把消息分成批次传输可以减少这开销。但是,这个需要权衡,批次里包含的消息越多,单位时间内处理的消息就越多,单个消息的传输时间就越长。如果进行压缩,可以提升数据的传输和存储能力,但需要更多的计算处理。
Q2:
什么是主题和分区?
Kafka的消息用主题进行分类,主题下可以被分为若干个分区。分区本质上是个提交日志,有新消息,这个消息就会以追加的方式写入分区,然后用先入先出的顺序读取。
但是因为主题会有多个分区,所以在整个主题的范围内,是无法保证消息的顺序的,单个分区则可以保证。
Kafka通过分区来实现数据冗余和伸缩性,因为分区可以分布在不同的服务器上,那就是说一个主题可以跨越多个服务器。
前面我们说Kafka可以看成一个流平台,很多时候,我们会把一个主题的数据看成一个流,不管有多少个分区。
Q3:
Kafka中的ISR、AR代表什么?ISR的伸缩指的什么?
ISR :In-Sync Replicas 副本同步队列
AR :Assigned Replicas 所有副本
ISR是由leader维护,follower从leader同步数据有一些延迟(包括 延迟时间replica.lag.time.max.ms 和 延迟条数replica.lag.max.message 两个维度,当前最新的版本0.10.x中只支持 replica.lag.time.max.ms 这个维度),任意一个超过阈值都会把follower剔除出ISR,存入OSR(Outof-Sync Replicas)列表,新加入的follower也会先存放在OSR中。
注:AR = ISR + OSR
Q4:
Broker 和 集群
一个独立的Kafka服务器叫Broker。broker的主要工作是,接收生产者的消息,设置偏移量,提交消息到磁盘保存;为消费者提供服务,响应请求,返回消息。在合适的硬件上,单个broker可以处理上千个分区和每秒百万级的消息量。
多个broker可以组成一个集群。每个集群中broker会选举出一个集群控制器。控制器会进行管理,包括将分区分配给broker和监控broker。
集群里,一个分区从属于一个broker,这个broker被称为首领。但是分区可以被分配给多个broker,这个时候会发生分区复制。
分区复制带来的好处是,提供了消息冗余。一旦首领broker失效,其他broker可以接管领导权。当然相关的消费者和生产者都要重新连接到新的首领上。
Q5:
kafka中的zookeeper起到什么作用?
zookeeper是一个分布式的协调组件,早期版本的kafaka用zk做 meta信息存储 , consumer的消费状态 , group的管理 以及 offset 的值。
考虑到zk本身的一些因素以及整个架构较大概率存在单点问题,新版本中逐渐弱化了zookeeper的作用。新的consumer使用了kafka内部的 group coordination 协议,也减少了对zookeeper的依赖。
Q6:
kafka follower如何与leader数据同步?
kafka的复制机制既不是完全的同步复制,也不是单纯的异步复制。
完全同步复制要求 All Alive Follower 都复制完,这条消息才会被认为commit,这种复制方式极大的影响了吞吐率。
一步复制方式下,Follower异步的从Leader复制数据,数据只要被Leader写入log就被认为已经commit,这种情况下,如果leader挂掉,会丢失数据;
kafka使用 ISR 的方式很好的均衡了确保数据不丢失以及吞吐率。Follower可以批量的从Leader复制数据,而且Leader充分利用磁盘顺序读以及 send file(zero copy) 机制,这样极大的提高复制性能,内部批量写磁盘,大幅减少了Follower与Leader的消息量差。
Q7:
kafka中的消息是否会丢失和重复消费?
消息发送:
kafka消息发送有两种方式:同步(sync)和异步(async);
默认是同步方式,可通过 producer.type 属性进行配置;
kafka通过配置 request.required.acks 属性来确认消息的生产。
0:表示不进行消息接收是否成功的确认;
1:表示当Leader接收成功时确认;
-1:表示Leader和Follower都接收成功时确认;
综上所述,有6种消息产生的情况,消息丢失的场景有:
acks=0,不和kafka集群进行消息接收确认,则当网络异常、缓冲区满了等情况时,消息可能丢失;
acks=1、同步模式下,只有Leader确认接收成功后但挂掉了,副本没有同步,数据可能丢失;
消息消费:
kafka消息消费有两个consumer接口, Low-level API 和 High-level API :
Low-level API:消费者自己维护offset等值,可以实现对kafka的完全控制;
High-level API:封装了对parition 和 offset 的管理,使用简单;
如果使用高级接口High-level API,可能存在一个问题就是当消息消费者从集群中把消息取出来,并提交了新的消息offset值后,还没来得及消费就挂掉了,那么下次再消费时之前没消费成功的消息就"诡异"的消失了;
解决方案:
1 针对消息丢失:同步模式下,确认机制设置为-1,即让消息写入Leader 和 Follower之后再确认消息发送成功;异步模式下,为防止缓冲区满,可以在配置文件设置不限制阻塞超时时间,当缓冲区满时让生产者一直处于阻塞状态。
2 针对消息重复:将消息的唯一标识保存到外部介质中,每次消费时判断是否处理过即可。
Q8:
kafka为什么不支持读写分离?
在kafka中,生产者写入消息、消费者读取消息的操作都是与Leader副本进行交互的,从而实现的是一种主写主读的生产消费模型。
kafka并不支持主写从读,因为主写从读有2个很明显的缺点:
数据一致性问题:数据从主节点转到从节点必然会有一个延时的时间窗口,这个时间窗口会导致主从节点之间的数据不一致。某一时刻,在主节点和从节点中A数据的值都为X,之后将主节点中A的值修改为Y,那么在这个变更通知到从节点之前,应用读取从节点中的A数据的值并不为最新的Y值,由此便产生了数据不一致的问题。
延时问题:类似Redis这种组件,数据从写入主节点到同步至从节点的过程中需要经历 网络→主节点内存→网络→从节点内存 这几个阶段,整个过程会耗费一定的时间。而在kafka中,主从同步会比Redis更加耗时,它需要经历 网络→主节点内存→主节点磁盘→网络→从节点内存→从节点磁盘 这几个阶段。对延时敏感的应用而言,主写从读的功能场景并不太适用。
点关注、不迷路
如果觉得文章不错,欢迎关注、点赞、收藏,你们的支持是我创作的动力,感谢大家。
如果文章写的有问题,请不要吝啬,欢迎留言指出,我会及时核查修改。
如果你还想更加深入的了解我,可以私信我。每天8:00准时推送技术文章,让你的上班路不在孤独,而且每月还有送书活动,助你提升硬实力!
中间件面试专题:kafka高频面试问题的更多相关文章
- 字节跳动上传了一份“面试官版Android面试小册”,不讲一句废话,全是精华
前言 金三银四马上就到了,很多粉丝朋友私信希望我出一篇面试专题或者分享面试相关的笔记来学习,这不今天就给大家安排上了?(都是干货,错过就是亏.) 下面的面试笔记都是精心整理好免费分享给大家的,希望新朋 ...
- 手撕面试官系列(八):分布式通讯ActiveMQ+RabbitMQ+Kafka面试专题
ActiveMQ专题 (面试题+答案领取方式见主页) 什么是 ActiveMQ? ActiveMQ 服务器宕机怎么办? 丢消息怎么办? 持久化消息非常慢. 消息的不均匀消费. 死信队列. Active ...
- php面试专题---MySQL分表
php面试专题---MySQL分表 一.总结 一句话总结: 分库分表要数据达到一定的量级才用,这样才有效率,不然利不一定大于弊,可能会增加一次I/O消耗 1.分库分表的使用量级是多少? 单表行数超过 ...
- php面试专题---MySQL分区
php面试专题---MySQL分区 一.总结 一句话总结: mysql的分区操作还比较简单,好处是也不用自己动手建表进行分区,和水平分表有点像 1.mysql分区简介? 一个表或索引-->N个物 ...
- 2019前端面试系列——JS高频手写代码题
实现 new 方法 /* * 1.创建一个空对象 * 2.链接到原型 * 3.绑定this值 * 4.返回新对象 */ // 第一种实现 function createNew() { let obj ...
- 手撕面试官系列(六):并发+Netty+JVM+Linux面试专题
并发面试专题 (面试题+答案领取方式见侧边栏) 现在有 T1.T2.T3 三个线程,你怎样保证 T2 在 T1 执行完后执行,T3 在 T2 执行完后执行? 在 Java 中 Lock 接口比 syn ...
- php面试专题---22、网站优化 总结
php面试专题---22.网站优化 总结 一.总结 一句话总结: 主要从前端.后端.数据库.资源四个方面开始发散 前端浏览器缓存和数据压缩前端优化(减少HTTP请求次数) 资源流量优化(防盗链处理)C ...
- php面试专题---21、MVC框架基本工作原理考察点
php面试专题---21.MVC框架基本工作原理考察点 一.总结 一句话总结: 会的东西快速过,不要浪费时间,生命有限,都是一些很简单的东西. 1.mvc框架单一入口的 优势 是什么? 可以进行统一的 ...
- php面试专题---20、MySQL的安全性考点
php面试专题---20.MySQL的安全性考点 一.总结 一句话总结: 还是得多看视频,教程看的浮光掠影,容易get不到重点:比如预处理防sql注入之前是挺熟,后面就忘记了,而且看文章get不到点 ...
随机推荐
- “3+3”看华为云FusionInsight如何引领“数据新基建”持续发展
摘要:一个统一的现代化的数据基建需要三类架构来实践三种不同的应用场景. 近期,美国知名科技企业风投机构A16Z总结出一套通用的技术架构服务,分为以下三种场景. 一.数据基建架构全景 数据流向显示,左侧 ...
- nginx&http 第三章 惊群
惊群:概念就不解释了. 直接说正题:惊群问题一般出现在那些web服务器上,Linux系统有个经典的accept惊群问题,这个问题现在已经在内核曾经得以解决,具体来讲就是当有新的连接进入到accept队 ...
- BeatifulSoup在测试工作中的应用
近期要做一个项目,重复性劳动比较多,小伙伴建议我用Jsoup,但是由于项目紧急,我直接选择了BeautifulSoup,关键原因是我Java语言不如Python掌握的熟练啊!所以,查了一圈它的中文文档 ...
- 一次webpack小规模优化经历
这标题一点营销号味道都没有,怎么会有人看啊!(笑) 没人看也无所谓的文章背景: 八月份入职了新公司,是个好几年的老项目了,公司产品是存在很久了,但我接触到的代码版本保守估计应该是有个三年到四年这样的历 ...
- java.lang.IllegalStateException: Duplicate key 20
这个我在公司遇到的一个问题.原因:使用Map<String, String> RelationMap = relation.stream().collect(Collectors.toMa ...
- BeanFactory and FactoryBean
BeanFactory,这是Spring容器的基础实现类,它负责生产和管理Bean的一个工厂.当然BeanFactory只是一个接口,它的常用实现有XmlBeanFactory.DefaultList ...
- 为什么思维导图软件MindManager成为了企业培训必备的工具
企业培训,无论是前期准备.中间的演讲演示.还是后期的总结整理等.MindManager都可以以不同的形式,给你更好的培训方式.下面就来看看MindManager是怎么协助企业培训的吧: 前期准备--制 ...
- 实用简易的U盘修复工具推荐
如果我们的U盘出现可以读取,但不能打开,或是提示格式化的情况,那可能是U盘硬件出现了问题.U盘内部部件损坏就只能维修了,如果是u盘出现逻辑错误,常用的解决方法就是到网上下载一个u盘修复工具,对u盘进行 ...
- kakafka - 为CQRS而生fka - 为CQRS而生
前段时间跟一个朋友聊起kafka,flint,spark这些是不是某种分布式运算框架.我自认为的分布式运算框架最基础条件是能够把多个集群节点当作一个完整的系统,然后程序好像是在同一台机器的内存里运行一 ...
- 聊聊ReentrantLock实现原理
ReentrantLock 是常用的锁,相对于Synchronized ,lock锁更人性化,阅读性更强 从LOCK切入 考虑下面的场景如果有A,B线程,同时去执行lock.lock(Lock loc ...