bzoj 4373: 算术天才⑨与等差数列 hash
题目大意: 给你n个数, 给两种操作, 一种给你l, r, k,问你[l, r]区间里的数排序后能否构成一个公差为k的等差数列。 另一种是将位置x的数变为y。 强制在线。
可以用hash来做, 用线段树保存一个区间里的最小值, 和, 以及平方的和。 然后每次询问, 假设这个区间构成等差数列,那么首项为这个区间的最小值, 然后按公式算出以minn为首项, k为公差的数列的和, 为a1*len+len*(len-1)/2*d, 然后算出平方的和, 相当于sigma(i : 0 to len-1) (a1+i*d)^2, 然后把它拆开, 就变成a1*a1*len+a1*d*len*(len-1)+d*d*len*(len-1)*(2*len-1)/6, 记得时刻取模防止爆longlong, /6那里用乘法逆元算。 然后看是否相等就可以了。
正解当然不是这样的..
#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <queue>
#include <stack>
#include <bitset>
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt<<1
#define mem(a) memset(a, 0, sizeof(a))
#define rson m+1, r, rt<<1|1
#define mem1(a) memset(a, -1, sizeof(a))
#define mem2(a) memset(a, 0x3f, sizeof(a))
#define rep(i, n, a) for(int i = a; i<n; i++)
#define fi first
#define se second
typedef pair<int, int> pll;
const double PI = acos(-1.0);
const double eps = 1e-;
const ll mod = 1e9+;
const ll inf = 1e18;
const int dir[][] = { {-, }, {, }, {, -}, {, } };
const int maxn = 3e5+;
ll sum1[maxn<<], sum2[maxn<<], minn[maxn<<], ans1, ans2, ans3;
void pushUp(int rt) {
sum1[rt] = sum1[rt<<]+sum1[rt<<|];
sum2[rt] = (sum2[rt<<] + sum2[rt<<|])%mod;
minn[rt] = min(minn[rt<<], minn[rt<<|]);
}
void build(int l, int r, int rt) {
if(l == r) {
scanf("%I64d", &sum1[rt]);
minn[rt] = sum1[rt];
sum2[rt] = sum1[rt]*sum1[rt]%mod;
return ;
}
int m = l+r>>;
build(lson);
build(rson);
pushUp(rt);
}
void update(int p, ll val, int l, int r, int rt) {
if(l == r) {
sum1[rt] = minn[rt] = val;
sum2[rt] = val*val%mod;
return ;
}
int m = l+r>>;
if(p<=m)
update(p, val, lson);
else
update(p, val, rson);
pushUp(rt);
}
void query(int L, int R, int l, int r, int rt) {
if(L<=l&&R>=r) {
ans1 += sum1[rt];
ans2 = (ans2+sum2[rt])%mod;
ans3 = min(ans3, minn[rt]);
return ;
}
int m = l+r>>;
if(L<=m)
query(L, R, lson);
if(R>m)
query(L, R, rson);
}
ll pow(ll a, ll b) {
ll ret = ;
while(b) {
if(b&) {
ret = ret*a%mod;
}
a = a*a%mod;
b>>=;
}
return ret;
}
ll get1(ll a1, ll l, ll d) {
ll ret = a1*l+l*(l-)/*d;
return ret;
}
ll get2(ll a1, ll l, ll d) {
ll ret = a1*a1%mod*l%mod;
ll rev = pow(6LL, mod-)%mod;
ret = (ret + d*d%mod*l%mod*(l-)%mod*(*l-)%mod*rev%mod)%mod;
ret = (ret + a1*d%mod*l%mod*(l-)%mod)%mod;
return ret%mod;
}
int main()
{
int n, m, cnt = , sign, x, y, z;
cin>>n>>m;
build(, n, );
while(m--) {
scanf("%d%d%d", &sign, &x, &y);
x ^= cnt, y ^= cnt;
if(sign == ) {
update(x, 1LL*y, , n, );
} else {
scanf("%d", &z);
z ^= cnt;
ans3 = inf, ans1 = ans2 = ;
query(x, y, , n, );
ll tmp1 = get1(ans3, y-x+, z);
ll tmp2 = get2(ans3, y-x+, z);
if(tmp1 == ans1 && tmp2 == ans2) {
cnt++;
puts("Yes");
} else {
puts("No");
}
}
}
return ;
}
bzoj 4373: 算术天才⑨与等差数列 hash的更多相关文章
- bzoj 4373 算术天才⑨与等差数列
4373: 算术天才⑨与等差数列 Time Limit: 10 Sec Memory Limit: 128 MBhttp://www.lydsy.com/JudgeOnline/problem.ph ...
- BZOJ 4373: 算术天才⑨与等差数列 线段树
Description 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k,问区间[l,r]内的数从小到大排序后能 ...
- bzoj 4373 算术天才⑨与等差数列——线段树+set
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4373 能形成公差为k的等差数列的条件:mx-mn=k*(r-l) && 差分 ...
- BZOJ 4373 算术天才⑨与等差数列 线段树+set(恶心死我了)
mdzz,这道题重构了4遍,花了一个晚上... 满足等差数列的条件: 1. 假设min是区间最小值,max是区间最大值,那么 max-min+k(r−l) 2. 区间相邻两个数之差的绝对值的gcd=k ...
- BZOJ 4373算术天才⑨与等差数列(线段树)
题意:给你一个长度为n的序列,有m个操作,写一个程序支持以下两个操作: 1. 修改一个值 2. 给出三个数l,r,k, 询问:如果把区间[l,r]的数从小到大排序,能否形成公差为k的等差数列. n,m ...
- BZOJ4373 算术天才⑨与等差数列 【线段树】*
BZOJ4373 算术天才⑨与等差数列 Description 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k ...
- 【BZOJ4373】算术天才⑨与等差数列 [线段树]
算术天才⑨与等差数列 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 算术天才⑨非常喜欢和等 ...
- 【BZOJ4373】算术天才⑨与等差数列 线段树+set
[BZOJ4373]算术天才⑨与等差数列 Description 算术天才⑨非常喜欢和等差数列玩耍.有一天,他给了你一个长度为n的序列,其中第i个数为a[i].他想考考你,每次他会给出询问l,r,k, ...
- JSOI2009 等差数列 和 算术天才⑨与等差数列 和 CH4302 Interval GCD
等差数列 为了检验学生的掌握情况,jyy布置了一道习题:给定一个长度为N(1≤N≤100,000)的数列,初始时第i个数为vi(vi是整数,−100,000≤vi≤100,000),学生们要按照jyy ...
随机推荐
- 适配iPad的操作表sheet
在 UIAlertController *alert = [UIAlertController alertControllerWithTitle:@"上传文件" message:@ ...
- as3 与js相互通信
1.as和js通讯实例 如果as3调用 JAVA script 中的函数直接在as中添加 if (ExternalInterface.available) { ExternalInterf ...
- C#高级编程三十天----泛型结构,泛型方法,泛型托付
泛型结构 泛型结构和泛型类差点儿是一直的,仅仅是泛型结构没有继承的特性..NET平台提供的一个泛型结构是(可空类型)Nullablle<T>.可空类型的引入,主要是为了解决数据库语言中的数 ...
- HTML之学习笔记(四)格式化标签和特殊字符
html常用的格式化标签使用如下 <html> <head> <title></title> </head> <body > & ...
- JavaScript引用类型之Array数组的concat()和push()方法的区别
在javascript中,我们一般都只用push向数组的尾部插入新元素的,但是其实在javascript中还有另外一个方法和push一样,也是向数组尾部插入新元素的,但是他们之间却存在着一定的区别,当 ...
- Asp.net 获取服务器指定文件夹目录文件,并提供下载
string dirPath = HttpContext.Current.Server.MapPath("uploads/"); if (Directory.Exists(dirP ...
- This project references NuGet package(s) that are missing on this computer.
Install Nuget. Right click on the solution and select "Enable NuGet Package Restore". Clic ...
- oracle rac 安装脚本
1. 配置/etc/hosts 网络 192.168.1.111 rac1 rac1.oracle.com192.168.1.182 rac1-vip 192.168.1.222 rac2 rac2. ...
- JDK源码学习--String篇(二) 关于String采用final修饰的思考
JDK源码学习String篇中,有一处错误,String类用final[不能被改变的]修饰,而我却写成静态的,感谢CTO-淼淼的指正. 风一样的码农提出的String为何采用final的设计,阅读JD ...
- Excel Sheet Row Numbers
Given the sequence S1 = {a,b,c,d,…,x,y,z,aa,ab,ac…. } and given that this sequence corresponds (term ...