子树操作, dfs序即可.然后计算<=L就直接在可持久化线段树上查询

-------------------------------------------------------------------

#include<bits/stdc++.h>
 
using namespace std;
 
#define M(l, r) (((l) + (r)) >> 1)
 
const int maxn = 200009;
 
typedef long long ll;
 
inline ll readll() {
char c = getchar();
for(; !isdigit(c); c = getchar());
ll ans = 0;
for(; isdigit(c); c = getchar())
  ans = ans * 10 + c - '0';
return ans;
}
inline int readint() {
char c = getchar();
for(; !isdigit(c); c = getchar());
int ans = 0;
for(; isdigit(c); c = getchar())
  ans = ans * 10 + c - '0';
return ans;
}
 
struct HASH {
ll id[maxn];
int N;
HASH() {
N = 0;
}
void add(ll v) {
id[N++] = v;
}
void work() {
sort(id, id + N);
N = unique(id, id + N) - id;
id[N] = 0x7fffffffffffffff;
}
int hash(ll v) {
return lower_bound(id, id + N, v) - id;
}
int _hash(ll v) {
return upper_bound(id, id + N, v) - id;
}
} h;
 
struct Node {
Node *l, *r;
int s;
} pool[maxn * 20], *pt = pool, *null, *root[maxn];
 
void set_null() {
null = pt++;
null->l = null->r = null;
null->s = 0;
}
 
int p;
Node* modify(Node* t, int l, int r) {
Node* h = pt++;
h->s = t->s + 1;
if(r > l) {
int m = M(l, r);
if(p <= m) {
h->l = modify(t->l, l, m);
h->r = t->r;
} else {
h->l = t->l;
h->r = modify(t->r, m + 1, r);
}
}
return h;
}
 
int query(int __l, int __r, int v) {
Node *_l = __l ? root[__l - 1] : null, *_r = root[__r];
int L = 1, R = h.N, ans = 0;
while(L < R) {
int m = M(L, R);
if(R <= v) {
ans +=_r->s - _l->s;
break;
}
if(m <= v) {
ans += _r->l->s - _l->l->s;
_l = _l->r; _r = _r->r; L = m + 1;
} else {
_l = _l->l; _r = _r->l; R = m;
}
}
return ans;
}
 
struct edge {
int to;
ll dist;
edge(int _t, ll _d):to(_t), dist(_d) {}
};
 
ll seq[maxn], L;
int _L[maxn], _R[maxn], cur = -1, N;
vector<edge> G[maxn];
 
void dfs(int x, ll d, int fa) {
seq[_L[x] = ++cur] = d;
for(vector<edge>::iterator e = G[x].begin(); e != G[x].end(); e++)
   if(e->to != fa) dfs(e->to, d + e->dist, x);
_R[x] = cur;
}
 
void init() {
N = readint(); L = readll();
for(int i = 1; i < N; i++) {
int p = readint() - 1; ll d = readll();
G[p].push_back(edge(i, d));
G[i].push_back(edge(p, d));
}
set_null();
}
 
void work() {
dfs(0, 0, -1);
for(int i = 0; i < N; i++)
   h.add(seq[i]);
h.work();
Node* fa = null;
for(int i = 0; i < N; i++) {
   p = h.hash(seq[i]) + 1;
   fa = root[i] = modify(fa, 1, h.N);
}
    for(int i = 0; i < N; i++)
printf("%d\n", query(_L[i], _R[i], h._hash(L + seq[_L[i]])));
}
 
int main() {
init();
work();
return 0;
}

-------------------------------------------------------------------

3011: [Usaco2012 Dec]Running Away From the Barn

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 136  Solved: 74
[Submit][Status][Discuss]

Description

It's milking time at Farmer John's farm, but the cows have all run away! Farmer John needs to round them all up, and needs your help in the search. FJ's farm is a series of N (1 <= N <= 200,000) pastures numbered 1...N connected by N - 1 bidirectional paths. The barn is located at pasture 1, and it is possible to reach any pasture from the barn. FJ's cows were in their pastures this morning, but who knows where they ran to by now. FJ does know that the cows only run away from the barn, and they are too lazy to run a distance of more than L. For every pasture, FJ wants to know how many different pastures cows starting in that pasture could have ended up in. Note: 64-bit integers (int64 in Pascal, long long in C/C++ and long in Java) are needed to store the distance values.

给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于l的点有多少个。

Input

* Line 1: 2 integers, N and L (1 <= N <= 200,000, 1 <= L <= 10^18)

* Lines 2..N: The ith line contains two integers p_i and l_i. p_i (1 <= p_i < i) is the first pasture on the shortest path between pasture i and the barn, and l_i (1 <= l_i <= 10^12) is the length of that path.

Output

* Lines 1..N: One number per line, the number on line i is the number pastures that can be reached from pasture i by taking roads that lead strictly farther away from the barn (pasture 1) whose total length does not exceed L.

Sample Input

4 5
1 4
2 3
1 5

Sample Output

3
2
1
1
OUTPUT DETAILS: Cows from pasture 1 can hide at pastures 1, 2, and 4. Cows from pasture 2 can hide at pastures 2 and 3. Pasture 3 and 4 are as far from the barn as possible, and the cows can hide there.

HINT

Source

BZOJ 3011: [Usaco2012 Dec]Running Away From the Barn( dfs序 + 主席树 )的更多相关文章

  1. BZOJ_3011_[Usaco2012 Dec]Running Away From the Barn _可并堆

    BZOJ_3011_[Usaco2012 Dec]Running Away From the Barn _可并堆 Description 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于l的 ...

  2. 【BZOJ3011】[Usaco2012 Dec]Running Away From the Barn 可并堆

    [BZOJ3011][Usaco2012 Dec]Running Away From the Barn Description It's milking time at Farmer John's f ...

  3. dfs序+主席树 或者 树链剖分+主席树(没写) 或者 线段树套线段树 或者 线段树套splay 或者 线段树套树状数组 bzoj 4448

    4448: [Scoi2015]情报传递 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 588  Solved: 308[Submit][Status ...

  4. BZOJ 3439: Kpm的MC密码 (trie+dfs序主席树)

    题意 略 分析 把串倒过来插进trietrietrie上, 那么一个串的kpmkpmkpm串就是这个串在trietrietrie上对应的结点的子树下面的所有字符串. 那么像 BZOJ 3551/354 ...

  5. [BZOJ3011][Usaco2012 Dec]Running Away From the Barn

    题意 给出一棵以1为根节点树,求每个节点的子树中到该节点距离<=l的节点的个数 题解 方法1:倍增+差分数组 首先可以很容易的转化问题,考虑每个节点对哪些节点有贡献 即每次对于一个节点,找到其第 ...

  6. bzoj3011 [Usaco2012 Dec]Running Away From the Barn 左偏树

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3011 题解 复习一下左偏树板子. 看完题目就知道是左偏树了. 结果这个板子还调了好久. 大概已 ...

  7. [Usaco2012 Dec]Running Away From the Barn

    题目描述 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于等于l的点有多少个. 输入格式 Line 1: 2 integers, N and L (1 <= N <= 200,0 ...

  8. bzoj 3439 Kpm的MC密码(Trie+dfs序+主席树)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3439 [题意] 给定若干串,问一个串的作为其后缀的给定串集合中的第k小. [思路] 如 ...

  9. BZOJ 3439: Kpm的MC密码( trie + DFS序 + 主席树 )

    把串倒过来插进trie上, 那么一个串的kpm串就是在以这个串最后一个为根的子树, 子树k大值的经典问题用dfs序+可持久化线段树就可以O(NlogN)解决 --------------------- ...

随机推荐

  1. pomelo

    简介 Pomelo 是基于 Node.js 的高性能.分布式游戏服务器框架.它包括基础的开发框架和相关的扩展组件(库和工具包),可以帮助你省去游戏开发枯燥中的重复劳动和底层逻辑的开发.Pomelo 不 ...

  2. mac 下 安装 mongodb 数据库

    1.在网上下载mongodb 安装包,官方网站 mongodb.org/downloads 2.将下载的安装文件放在指定目录下,例 User/电脑名/文件夹名... 3.解压安装包,如需改名,新建文件 ...

  3. DevExpress ASP.NET 使用经验谈(3)-XPO对象的使用(使用指定数据连接)

    首先,我们贴出上一节Users类XPO对象的保存代码,直接建立的XPO Session会话,因为没有与我们所期望的数据层建立绑定, 所以程序自动创建了一个Access数据库,作为默认数据库操作对象来使 ...

  4. bootstrap基础样式使用

    <small> 为了给段落添加强调文本,则可以添加 class="lead" <small>本行内容是在标签内</small><br> ...

  5. C#中文件管理的运用(Twelfth Day)

    又到了总结的时间了,今天在云和学院学习了文件管理的一些运用及复习昨天学的里氏转换.今天我就总结下昨天遗留下的问题以及今天所学的知识. 昨天遗留的问题 里氏转换(父类转子类) 例:在这里定义父类Peop ...

  6. C# Best Practices - Building Good Classes

    Building a Class The last four refer as members Signature Accessiblity modifier (Default:internal) c ...

  7. js中的typeof

    typeof的几种返回结果的分类: 转自:http://www.360doc.com/content/14/0718/15/8790037_395279403.shtml typeof运算符介 绍:t ...

  8. python中的异常如何处理

    一.异常基础 在编程程序出现bug时一般不会将错误信息显示给用户,而是现实一个提示的页面. try: #正常逻辑代码 input = raw_input("输入数字:") data ...

  9. C语言循环小技巧

    写代码,有两类追求,一种是追求实用(Coder),一种是追求代码艺术(Artist) 我是那种追实用追腻了,偶然追一下艺术(就是偶然和艺术有一腿)的那种Coder 很多人,已经习惯了for(i=0; ...

  10. 【转】Plotting texts as graphs with R and igraph

    原文转自:http://blog.ynada.com/303 I’ve plotted several word association graphs for this New York Times ...