cf492E Vanya and Field
Vanya decided to walk in the field of size n × n cells. The field contains m apple trees, the i-th apple tree is at the cell with coordinates(xi, yi). Vanya moves towards vector (dx, dy). That means that if Vanya is now at the cell (x, y), then in a second he will be at cell . The following condition is satisfied for the vector:
, where
is the largest integer that divides both a and b. Vanya ends his path when he reaches the square he has already visited.
Vanya wonders, from what square of the field he should start his path to see as many apple trees as possible.
The first line contains integers n, m, dx, dy(1 ≤ n ≤ 106, 1 ≤ m ≤ 105, 1 ≤ dx, dy ≤ n) — the size of the field, the number of apple trees and the vector of Vanya's movement. Next m lines contain integers xi, yi (0 ≤ xi, yi ≤ n - 1) — the coordinates of apples. One cell may contain multiple apple trees.
Print two space-separated numbers — the coordinates of the cell from which you should start your path. If there are several answers you are allowed to print any of them.
5 5 2 3
0 0
1 2
1 3
2 4
3 1
1 3
2 3 1 1
0 0
0 1
1 1
0 0
In the first sample Vanya's path will look like: (1, 3) - (3, 1) - (0, 4) - (2, 2) - (4, 0) - (1, 3)
In the second sample: (0, 0) - (1, 1) - (0, 0)
这道真是想法题了……
首先,从一个点出发一直走,它能到达的点的集合一定是一个环(因为要是能一直走到当前没走过的点那还得了)
然后要考虑这样的集合有什么性质
把第一个样例拿来模拟一下,不取模看的更清楚:
(1,3)
(3,6)
(5,9)
(7,12)
(9,15)
(11,18)
这样规律就很清楚了吧:对于n*n的格子,从一个点出发走了n步之后回到这个点,集合里一定有n个元素
所以有n个集合,用(0,0)到(0,n-1)共n个在不同集合的点标记它们
然后从(0,0)开始枚举往上走,就可以算出每一行中哪一个格子是和(0,0)在同一集合
那么其他点依次右移一格就知道在那一个集合里了
最后每一个集合里的点都是可以相互到达的,随便输出一个就好了
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 0x7ffffff
#define pa pair<int,int>
#define pi 3.1415926535897932384626433832795028841971
#define mod 1000007
using namespace std;
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
struct po{
int x,y,rnk;
}point[1000010];
int head[1000010];
int n,m,xx,yy,cnt,ans,mx;
int nx,ny;
int floor[1000010];
int sum[1000010];
int main()
{
n=read();m=read();xx=read();yy=read();
for(int i=1;i<=n+1;i++)
{
nx+=xx;ny+=yy;
if (nx>=n)nx-=n;
if (ny>=n)ny-=n;
floor[nx]=ny;
}
for (int i=1;i<=m;i++)
{
int nx=read();
int ny=read();
int flo=floor[nx];
int dire=ny-flo;if (dire<0)dire+=n;
sum[dire]++;
if(sum[dire]>mx)
{
mx=sum[dire];
ans=dire;
} }
printf("%d %d\n",0,ans);
return 0;
}
cf492E Vanya and Field的更多相关文章
- cf492E. Vanya and Field(扩展欧几里得)
题意 $n \times n$的网格,有$m$个苹果树,选择一个点出发,每次增加一个偏移量$(dx, dy)$,最大化经过的苹果树的数量 Sol 上面那个互素一开始没看见,然后就GG了 很显然,若$n ...
- Codeforces Round #280 (Div. 2) E. Vanya and Field 数学
E. Vanya and Field Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/492/pr ...
- Codeforces Round #280 (Div. 2)E Vanya and Field(简单题)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud 本场题目都比较简单,故只写了E题. E. Vanya and Field Vany ...
- Vanya and Field
Vanya and Field 题目链接:http://www.codeforces.com/problemset/problem/492/E 逆元 刚看到这题的时候一脸懵逼不知道从哪下手好,于是打表 ...
- codeforces 492E. Vanya and Field(exgcd求逆元)
题目链接:codeforces 492e vanya and field 留个扩展gcd求逆元的板子. 设i,j为每颗苹果树的位置,因为gcd(n,dx) = 1,gcd(n,dy) = 1,所以当走 ...
- Codeforces Round #280 (Div. 2) E. Vanya and Field 思维题
E. Vanya and Field time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- CodeForces 492E Vanya and Field (思维题)
E. Vanya and Field time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- Codeforces 492E Vanya and Field
E. Vanya and Field time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- 【CF492E】【数学】Vanya and Field
Vanya decided to walk in the field of size n × n cells. The field contains m apple trees, the i-th a ...
随机推荐
- 组播MAC地址转换关系及唯一性处理
组播地址与其对应的组播MAC换算关系如下: 组播MAC=组播MAC标识+组播IP后23位对应的二进制位(32位的IP地址取后23位导致32组IP地址对应的多播IP相同) (IANA把01:00:5 ...
- Android学习之多点触摸并不神秘
最近研究了一下多点触摸,写了个利用多点触摸来控制图片大小和单点触摸控制图片移动的程序,和大家分享分享. Android中监听触摸事件是onTouchEvent方法,它的参数为MotionEvent,下 ...
- javascript eval和JSON之间的联系(转)
eval函数的工作原理 eval函数会评估一个给定的含有JavaScript代码的字符串,并且试图去执行包含在字符串里的表达式或者一系列的合法的JavaScript语句.eval函数将把最后一个表达式 ...
- 设计模式17---设计模式之模板方法模式(Template Method)(行为型)
1.场景模拟 使用软件模拟登录控制,普通用户和工作人员用户,工作人员的密码在数据库中是加密的. 步骤大致如下: 前台提交,后台获取登录信息,同数据库中的登陆信息进行比较,只不过工作人员是加密的,普通用 ...
- MySQL与mabits大小比较、日期比较示例
首先,使用mysql查询从今往后的60天数据 SELECT count(*), b1.record_date FROM nk_house_use_record AS b1, ( SELECT a.th ...
- USB 管道 && 端点
管道是对主机和usb设备间通信流的抽象. 管道和usb设备中的端点一一对应,一个usb设备含有多少个端点,其和主机进行通信时就可以使用多少条管道,且端点的类型决定了管道中数据的传输类型. ...
- 网页CSS1
样式的属性 1,背景与前景 background-color: //背景的颜色 background-image:url //背景图片 background-attachment:fixed; //背 ...
- (三)《Java编程思想》——构造函数初始化
1.初始化顺序是由变量在类内的定义顺序决定的,并且先初始化变量,然后才调用构造函数. package chapter4; //: OrderOfInitialization.java /** * 初始 ...
- js-事件委托
事件委托一般用于动态生成的元素中使用,如下: <!DOCTYPE html> <html> <head> <meta charset="utf-8& ...
- 使用ICallbackEventHandler接口更高效实现Ajax
使用ICallbackEventHandler接口可以方便地高效地实现Ajax功能 1.处理页面需实现ICallbackEventHandler接口,此接口有两个方法 a.GetCallbackRes ...