Bayesian Formulation on Cooperative Tracking
Suppose a joint state representing a set of \(N_{n}\) nodes moving in a field
\[
\textbf{X}=
\begin{bmatrix}
\left(\textbf{x}^{1}\right)^{T} & \left(\textbf{x}^{2}\right)^{T} & \cdots & \left(\textbf{x}^{N_{n}}\right)^{T} \\
\end{bmatrix}
^{T}
%_{n\times 1}
\]
To track the joint state cooperatively, a filter propagates states from time \(k-1\) to \(k\) and updates estimates with all observations at time \(k\).
\begin{equation} \label{eq:cooperativeFormulation}
P\left(\textbf{X}_{k}|\textbf{Z}_{1:k}\right) \propto P\left(\textbf{Z}_{k}|\textbf{X}_{k}\right) \int P\left(\textbf{X}_{k}|\textbf{X}_{k-1}\right) P\left(\textbf{X}_{k-1}|\textbf{Z}_{1:k-1}\right)d\textbf{X}_{k-1}
\end{equation}
We make the following assumptions:
- every node moves independently in the field, from which we have: \(P\left(\textbf{X}_{k}|\textbf{X}_{k-1}\right)=\prod_{p=1}^{N_{n}}P\left(\textbf{x}_{k}^{p}|\textbf{x}_{k-1}^{p}\right)\).
- an egocentric position observation \(\textbf{z}_{k}^{p}\) regarding node \(p\) is only dependent on current state of the node \(\textbf{x}_{k}^{p}\).
- a relative range observation \(\textbf{z}_{k}^{p\rightarrow q}\ \left(p\neq q\right)\) is only conditional on the current state of two involved nodes, i.e. \(\textbf{x}_{k}^{p}\) and \(\textbf{x}_{k}^{q}\).
Therefore the observation component of Equation \eqref{eq:cooperativeFormulation} is able to be further factorised to absolute and relative observations.
\[
P\left(\textbf{Z}_{k}|\textbf{X}_{k}\right)=\left(\prod_{p=1}^{N_{n}}P\left(\textbf{z}_{k}^{p}|\textbf{x}_{k}^{p}\right)\right)\left(\prod_{p=1}^{N_{n}}\prod_{q=1}^{N_{n}}P\left(\textbf{z}_{k}^{p\rightarrow q}|\textbf{x}_{k}^{p},\textbf{x}_{k}^{q}\right)\right)
\]
where \(p\neq q\).
A marginal distribution \(P\left(\textbf{x}_{k}^{p}|\textbf{Z}_{1:k}\right)\) for node \(p\) at time \(k\) could be obtained by integrating with respect to the joint state of the rest nodes (denoted by \(\overline{\textbf{X}}_{k}\)) in the joint posterior in Equation \eqref{eq:cooperativeFormulation}. This is achieved by:
\begin{equation} \label{eq:marginalisation}
P\left(\textbf{x}_{k}^{p}|\textbf{Z}_{1:k}\right)=\int P\left(\textbf{X}_{k}|\textbf{Z}_{1:k}\right)d \overline{\textbf{X}}_{k}
\end{equation}
where
\(
\textbf{X}_{k}=
\begin{bmatrix}
\left(\textbf{x}_{k}^{p}\right)^{T} & \overline{\textbf{X}}^{T}_{k} \\
\end{bmatrix}
^{T}
\)
本站内容若无说明,则为原创
转载请注明,欢迎讨论和指正
bot.Seamus
Bayesian Formulation on Cooperative Tracking的更多相关文章
- 【综述】(MIT博士)林达华老师-"概率模型与计算机视觉”
[综述](MIT博士)林达华老师-"概率模型与计算机视觉” 距上一次邀请中国科学院的樊彬老师为我们撰写图像特征描述符方面的综述(http://www.sigvc.org/bbs/thread ...
- 概率图模型(PGM)综述-by MIT 林达华博士
声明:本文转载自http://www.sigvc.org/bbs/thread-728-1-1.html,个人感觉是很好的PGM理论综述,高屋建瓴的总结了PGM的主要分支和发展趋势,特收藏于此. “概 ...
- Machine Learning and Data Mining(机器学习与数据挖掘)
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...
- Adaptive Decontamination of the Training Set: A Unified Formulation for Discriminative Visual Tracking
Martin Danelljan 判决类追踪模型是由训练样本学习得到,但是为了适应目标和背景的变化sample set在每一帧中都会更新. 令(xjk, yjk)表示第k帧k={1,2,...,t}中 ...
- Bayesian Face Revisited A Joint Formulation
很有意思的一篇人脸识别算法文章,人家写的太好,就不好意思写了,收集了一些资料,包括了原理介绍,流程图,项目网址和作者主页信息等. 参考资料: [1]. http://blog.csdn.net/csy ...
- (转)CVPR 2016 Visual Tracking Paper Review
CVPR 2016 Visual Tracking Paper Review 本文摘自:http://blog.csdn.net/ben_ben_niao/article/details/52072 ...
- 基于粒子滤波的物体跟踪 Particle Filter Object Tracking
Video来源地址 一直都觉得粒子滤波是个挺牛的东西,每次试图看文献都被复杂的数学符号搞得看不下去.一个偶然的机会发现了Rob Hess(http://web.engr.oregonstate.edu ...
- [Bayesian] “我是bayesian我怕谁”系列 - Exact Inferences
要整理这部分内容,一开始我是拒绝的.欣赏贝叶斯的人本就不多,这部分过后恐怕就要成为“从入门到放弃”系列. 但,这部分是基础,不管是Professor Daphne Koller,还是统计学习经典,都有 ...
- KCF:High-Speed Tracking with Kernelized Correlation Filters 的翻译与分析(一)。分享与转发请注明出处-作者:行于此路
High-Speed Tracking with Kernelized Correlation Filters 的翻译与分析 基于核相关滤波器的高速目标跟踪方法,简称KCF 写在前面,之所以对这篇文章 ...
随机推荐
- Android 打开URL
打开链接 Intent it = new Intent(Intent.ACTION_VIEW, Uri.parse("http://www.baidu.com")); it.set ...
- 安装配置MongoDB数据库
一.关闭SElinux.配置防火墙 1.vi /etc/selinux/config #SELINUX=enforcing #注释掉 #SELINUXTYPE=targeted #注释掉 SELINU ...
- js中的注意事项(持续整理)
1.兼容性 <div class="toutiao_r fl_r" id ="toutiao_r"></div> 这个div中有两个样式 ...
- C# Lazy<T>(转)
本文来自:http://www.cnblogs.com/zhangpengshou/archive/2012/12/10/2811765.html .NET Framework 4 在一次次跳票中终于 ...
- Android清理内存
Android内存清理,利用ActivityManager获取当前正在运行的进程,清理这些进程释放内存. 可以根据importance的不同来判断前台或后台RunningAppProcessInfo ...
- UVA 246 - 10-20-30 (模拟+STL)
UVA 246 - 10-20-30 题目链接 题意:给52张的扑克堆,先从左往右发7张牌,之后连续不断从左往右发7张牌,假设有牌堆形成了下面3种情况(按顺序推断): 1.头两张+尾一张和为10或20 ...
- NTP-ntpdate:no server suitable for synchronization found
NTP-ntpdate 问题处理 解决ntp的错误 no server suitable for synchronization found 当用ntpdate -d 来查询时会发现导致 no ser ...
- NDK下 将Platinum SDK 编译成so库 (android - upnp)
Platinum UPnP SDK 是一个跨平台的C++库,利用该库,可以很容易就构建出DLNA/UPnP控制点(DLNA/UPnP Control Point)和DLNA/UPnP设备(DLNA/U ...
- stagefright框架(二)- 和OpenMAX的運作
Stagefright的編解碼功能是利用OpenMAX框架,而且用的還是OpenCORE之OMX的實作,我們來看一下Stagefright和OMX是如何運作的. (1) OMX_Init OMXCli ...
- CSS3实现图片鼠标悬浮放大效果
.excerpt .focus a img{ -webkit-transition: all ease .3s; transition: all ease .3s }.excerpt .focus a ...