转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove

题意:给出一个环,每个点是一个数字,取一个子串,使得拼接起来的数字是K的倍数。

由于K不大,暂且不考虑环的话,那么dp[i][j]表示以i结尾的,模K为j的有多少个子串。

那么sigma (dp[i][0])便是不考虑环的答案。

考虑环的话,不知道别人怎么写的,我感觉我的写法不是很复杂。

环和情况1 和n肯定是必选的,那么便是一个前缀为后缀,一个后缀为前缀拼接而成。

所以枚举某个前缀,求出前缀模K,那么枚举后缀模K的值,通过之前已经预处理过的dp值,便可以求出有多少个后缀满足为K的倍数。

但是这样可能后缀和前缀重叠了,所以我们枚举前缀的同时,依次记录后缀不同模值的个数。

随着前缀的增长,这些后缀都是和前缀重叠的。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <map>
#include <vector>
#include <string>
#include <queue>
#include <cmath>
#include <algorithm>
#define lson step << 1
#define rson step << 1 | 1
#pragma comment(linker,"/STACK:102400000,102400000")
using namespace std;
typedef long long LL;
const int N = 50005;
const int M = 205;
int n , k , a[N] ,l[N];
int dp[2][M] , prefix[N] , fac[N << 2] , suffix[N];
int cnt[M];
int cal (int x) {
int cnt = 0;
while (x) x /= 10 , cnt ++;
return cnt;
}
int main () {
#ifndef ONLINE_JUDGE
freopen ("input.txt" , "r" , stdin);
// freopen ("output.txt" , "w" , stdout);
#endif
while (scanf ("%d %d" , &n , &k) != EOF) {
fac[0] = 1;
for (int i = 1 ; i <= (n << 2) ; i ++)
fac[i] = fac[i - 1] * 10 % k;
for (int i = 1 ; i <= n ; i ++) {
scanf ("%d" , &a[i]);
l[i] = cal (a[i]);
}
for (int i = 0 ; i < 2 ; i ++) {
for (int j = 0 ; j < k ; j ++)
dp[i][j] = 0;
}
dp[1][a[1] % k] = 1;
LL ans = dp[1][0];
for (int i = 2 ; i <= n ; i ++) {
for (int j = 0 ; j < k ; j ++)
dp[i & 1][j] = 0;
dp[i & 1][a[i] % k] ++;
for (int j = 0 ; j < k ; j ++) {
dp[i & 1][(j * fac[l[i]] + a[i]) %k] += dp[(i - 1) & 1][j];
}
ans += dp[i & 1][0];
}
prefix[0] = 0;suffix[n + 1] = 0;
for (int i = 1 ; i <= n ; i ++) {
prefix[i] = (prefix[i - 1] * fac[l[i]] + a[i]) % k;
}
int len = 0;
for (int i = n ; i >= 1 ; i --) {
suffix[i] = (a[i] * fac[len] + suffix[i + 1]) % k;
len += l[i];
}
len = 0;
for (int i = 0 ; i < k ; i ++)
cnt[i] = 0;
for (int i = 1 ; i <= n ; i ++) {
cnt[suffix[i]] ++;
len += l[i];
int p = prefix[i];
for (int j = 0 ; j < k ; j ++) {
if ((j * fac[len] + p) % k) continue;
ans += dp[n & 1][j] - cnt[j];
}
}
printf ("%I64d\n" , ans);
}
return 0;
}

HDU 4669 Mutiples on a circle (DP , 统计)的更多相关文章

  1. HDU 4669 Mutiples on a circle (2013多校7 1004题)

    Mutiples on a circle Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Oth ...

  2. HDU 4669 Mutiples on a circle 数位DP

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4669 考察对取模的的理解深不深刻啊,当然还有状态的设计····设d[i][j]表示以第i个数结尾,余 ...

  3. HDU 4669 Mutiples on a circle(环状DP)

    题目链接 这是最早看懂题意的一题,状态转移,挺好想..但是比赛时候,就是没有想到怎么去重,而且当时有些情况,也没注意到. 先预处理的dp[0]的情况,就是以p[0]为结尾的情况.之后D就行了,例如样例 ...

  4. HDU 4669 Mutiples on a circle 不知道该归为哪一类。

    题意:给你N个珠宝和一个K,每个珠宝上面都有数字,这个珠宝做成项链,把珠宝上的数字拼起来如果可以整除掉K,那么久说这个数字为wonderful value,问你有多少种方案可以组成WONDERFUL ...

  5. HDU 4669 Mutiples on a circle 动态规划

    参考了官方题解给的方法: 对于处理循环,官方给了一种很巧妙的方法: #include <cstdio> #include <cstring> #include <cstd ...

  6. HDU 4665 Mutiples on a circle (圆环DP)

    题意 N个数的圆环上有多少种方案可以使得选出来的一段数是K的倍数(N<=50000, K<=200, a[i]<=1000). 思路 多校第七场1004.圆上的DP--大脑太简单处理 ...

  7. HDU 1024 Max Sum Plus Plus --- dp+滚动数组

    HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...

  8. HDU 1231 最大连续子序列 --- 入门DP

    HDU 1231 题目大意以及解题思路见: HDU 1003题解,此题和HDU 1003只是记录的信息不同,处理完全相同. /* HDU 1231 最大连续子序列 --- 入门DP */ #inclu ...

  9. hdu 4778 Gems Fight! 博弈+状态dp+搜索

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4102743.html 题目链接:hdu 4778 Gems Fight! 博弈+状态dp+搜 ...

随机推荐

  1. 【Maven】pom.xml 配置 eclipse错误

    <!-- servlet --> <dependency> <groupId>javax.servlet</groupId> <artifactI ...

  2. python成长之路——第三天

    一.collections系列: collections其实是python的标准库,也就是python的一个内置模块,因此使用之前导入一下collections模块即可,collections在pyt ...

  3. 《算法导论》读书笔记之动态规划—最长公共子序列 & 最长公共子串(LCS)

    From:http://my.oschina.net/leejun2005/blog/117167 1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要 ...

  4. SMTP邮件传输协议发送邮件和附件(转)

    1.     SMTP 常用命令简介 1). SMTP 常用命令 HELO/EHLO 向服务器标识用户身份 MAIL 初始化邮件传输 mail from: RCPT 标识单个的邮件接收人:常在MAIL ...

  5. 数据挖掘算法学习(三)NaiveBayes算法

    算法简单介绍 NBC是应用最广的分类算法之中的一个.朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率.同一时候,NBC模型所需预计的參数非常少,对缺失数据不太敏感,算法也比較简 ...

  6. UNIX网络编程 卷2:进程间通信

    这篇是计算机类的优质预售推荐>>>><UNIX网络编程 卷2:进程间通信(第2版)> UNIX和网络专家W. Richard Stevens的传世之作 编辑推荐 两 ...

  7. 二叉树的前序和中序得到后序 hdu1710

    今天看学长发过来的资料上面提到了中科院机试会有一个二叉树的前序中序得到后序的题目.中科院的代码编写时间为一个小时,于是在七点整的时候我开始拍这个题目.这种类型完全没做过,只有纸质实现过,主体代码半个小 ...

  8. Python 第一篇:python简介和入门

    一.python简介 1.python下载地址:https://www.python.org/downloads/ Python的创始人为Guido van Rossum.1989年圣诞节期间,在阿姆 ...

  9. 【转载】django在eclipse环境下建web网站

    一.创建一个项目如果这是你第一次使用Django,那么你必须进行一些初始设置.也就是通过自动生成代码来建立一个Django项目--一个Django项目的设置集,包含了数据库配置.Django详细选项设 ...

  10. Cloud Engine

    Cloud Engine:大杀器如何炼成   郑昀 创建于2016/6/18 最后更新于2016/6/19 点击查看我的<如何从零搭建一个技术平台>,这是一个系列.转载时请注明“转载自旁观 ...