t检验和方差分析主要针对于连续变量,秩和检验主要针对有序分类变量,而卡方检验主要针对无序分类变量(也可以用于连续变量,但需要做离散化处理),用途同样非常广泛,基于卡方统计量也衍生出来很多统计方法。

卡方统计量是基于卡方分布的一种检验方法,根据频数值来构造统计量,是一种非参数检验方法。SPSS中在交叉表和非参数检验中,都可调用卡方检验。

卡方检验的主要有两类应用

一、拟合度检验

1.检验单个无序分类变量各分类的实际观察次数和理论次数是否一致

此类问题为单变量检验,首先要明确理论次数,这个理论次数是根据专业或经验已知的,原假设为观察次数与理论次数一致

【例】:随机抽取60名高一学生,问他们文理要不要分科,回答赞成的39人,反对的21人, 问对分科的意见是否有显著的差异。

分析:如果意见没有差异,那么赞成反对的人数应该各半,即30次,因此理论次数为30

【例】:一周内各日患忧郁症的人数分布如下表所示,请检验一周内各日人们忧郁数是否满足1:1:2:2:1:1:1

本例中检验的理论次数就不是各半了,而是有一定的比例1:1:2:2:1:1:1

2.检验某分类变量各类别出现的概率是否相等 此类问题也属于单变量检验,例如掷硬币正反面出现的概率均为1/2,骰子每面出现的概率为1/6,原假设为变量各类别出现的概率相等

【例】:一个骰子投掷120次,记录掷得每个点数的次数,问该骰子是否存在问题 如果骰子是正常的,那么每个点数掷得的概率应该相等,操作方法和前面一样,也使用非参数检验过程,选择默认的所有类别相等

实际上,上面的第一个例子碰巧可以和本例互相转化,意见没有差异等同于赞成和反对出现的概率相等,而每个骰子点数出现的理论次数为120*1/6=20次

3.检验某连续变量分布是否和某种理论分布一致

卡方检验主要用于分类变量,但是也可以用于对连续变量的拟合度检验上,此类问题的基本思想是:将总体X的取值范围分成k个互不重叠的小区间A1...A2...Ak,把落入第i个小区间的样本值个数作为实际频数,所有实际频数之和等于样本容量,根据理论分布,可以算出总体X的值落入每个小区间Ai的概率Pi,于是nPi就是落入Ai的样本值的理论频数。有了实际频数和理论频数,就可以计算卡方统计量并进行卡方检验了。

二、独立性检验

独立性检验分析两变量之间是否相互独立或有无差别,也可以在控制某种因素之后,分析两变量之间是否相互独立或有无差别。原假设为两变量相互独立或两变量间的相互作用没有差别。

对于两变量一般采用列联表的形式记录观察数据,分为四格表和R*C列联表,根据卡方统计量和分类变量的类型,又衍生出一些相关系数,这在相关分析中已经讲过。

【例】:为了解男女在公共场所禁烟上的态度,随机调查100名男性和80名女性。男性中有 58人赞成禁烟,42人不赞成;而女性中则有61人赞成,19人不赞成。分析男女在公共场所禁烟的问题所持态度不同? 或者说禁烟态度是否随性别变化而变化

两变量之间的独立性,是指一个变量不随另一个变量的变化而变化,该问题的一种分析角度是分析男女在公共场所禁烟的问题所持态度不同,这看似和拟合性类似,但是其中涉及两个变量——性别和态度,因此属于独立性检验。

从表面上看,拟合性检验和独立性检验不论在列联表的形式上,还是在计算卡方的公式上都是相同的,所以经常被笼统地称为卡方检验。但是两者还是存在差异的。

首先,两种检验抽取样本的方法不同。如果抽样是在各类别中分别进行,依照各类别分别计算其比例,属于拟合优度检验。如果抽样时并未事先分类,抽样后根据研究内容,把入选单位按两类变量进行分类,形成列联表,则是独立性检验。

其次,两种检验假设的内容有所差异。拟合优度检验的原假设通常是假设各类别总体比例等于某个期望概率,而独立性检验中原假设则假设两个变量之间独立。

最后,期望频数的计算不同。拟合优度检验是利用原假设中的期望概率,用观察频数乘以期望概率,直接得到期望频数。独立性检验中两个水平的联合概率是两个单独概率的乘积

SPSS数据分析—卡方检验的更多相关文章

  1. SPSS数据分析方法不知道如何选择

      一提到数学,高等数学,线性代数,概率论与数理统计,数值分析,空间解析几何这些数学课程,头疼呀.作为文科生,遇见这些课程时,通常都是各种寻求帮助,班上有位宅男数学很厉害,各种被女生‘围观’,这数学为 ...

  2. 快速掌握SPSS数据分析

      SPSS难吗?无非就是数据类型的区别后,就能理解应该用什么样的分析方法,对应着分析方法无非是找一些参考资料进行即可.甚至在线网页SPSS软件直接可以将数据分析结果指标人工智能地分析出来,这有多难呢 ...

  3. SPSS数据分析—对数线性模型

    我们之前讲Logistic回归模型的时候说过,分类数据在使用卡方检验的时候,当分类过多或者每个类别的水平数过多时,单元格会划分的非常细,有可能会导致大量单元格频数很小甚至为0,并且卡方检验虽然可以分析 ...

  4. SPSS数据分析—二分类Logistic回归模型

    对于分类变量,我们知道通常使用卡方检验,但卡方检验仅能分析因素的作用,无法继续分析其作用大小和方向,并且当因素水平过多时,单元格被划分的越来越细,频数有可能为0,导致结果不准确,最重要的是卡方检验不能 ...

  5. SPSS数据分析—多维尺度分析

    在市场研究中,有一种分析是研究消费者态度或偏好,收集的数据是某些对象的评分数据,这些评分数据可以看做是对象间相似性或差异性的表现,也就是一种距离,距离近的差异性小,距离远的差异性大.而我们的分析目的也 ...

  6. SPSS数据分析—对应分析

    卡方检验只能对两个分类变量之间是否存在联系进行检验,如果分类变量有多个水平的话,则无法衡量每个水平间的联系.对此,虽然可以使用逻辑回归进行建模,但是如果分类变量的水平非常多,就需要分别设定哑变量,这样 ...

  7. SPSS数据分析—非参数检验

    统计学的假设检验可以分为参数检验和非参数检验,参数检验都是根据一些假设条件推算而来,当这些假设条件无法满足的时候,参数检验的效能会大打折扣,甚至出现错误的结果,而非参数检验通常是没有假设条件的,因此应 ...

  8. SPSS数据分析—相关分析

    相关系数是衡量变量之间相关程度的度量,也是很多分析的中的当中环节,SPSS做相关分析比较简单,主要是区别如何使用这些相关系数,如果不想定量的分析相关性的话,直接观察散点图也可以. 相关系数有一些需要注 ...

  9. 交完论文才发现spss数据分析做错了

    上周,终于把毕业论文交给导师了.然而,今天导师却邮件我,叫我到他办公室谈谈.具体是谈什么呢?我百思不得其解:对论文几次大修小修后,重复率已经低于学校的上限了,论文结构也很完整,我已经在做答辩的ppt了 ...

随机推荐

  1. js 十分精确身份证验证

    checkIdcard:function (idcard) { // 1 "验证通过!", 0 //身份证号码校验错误 var Errors = new Array( " ...

  2. Win10如何设置防火墙开放特定端口 windows10防火墙设置对特定端口开放的方法

    Win10防火墙虽然能够很好地保护我们的系统,但同时也会因限制了某些端口,而给我们的操作带了一些不便.对于既想使用某些端口,又不愿关闭防火墙的用户而言,在Win10系统中设置防火墙开放特定端口就非常必 ...

  3. MVC_表单和HTML辅助方法

    表单的使用 action特性告知Web浏览器信息发往哪里. method特性告知浏览器使用HTTP POST 还是 HTTP GET. GET请求用于读操作, POST请求用于写操作 HTML辅助方法 ...

  4. Lua JSONRPC学习笔记

    JSON RPC JSON RPC 为利用json数据格式来执行远程调用方式, 作用同xmlrpc,不过与xmlrpc相比, jsonrpc更加轻量,json更加节省数据量,更加可读性高. 官网网站: ...

  5. bootstrap入门-3.响应式原理

    Bootstrap网格系统(Grid System) 响应式网格系统随着屏幕或视口(viewport)尺寸的增加,系统会自动分为最多12列. 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 ...

  6. 前端里神奇的BFC 原理剖析

    以前在做自适应两栏布局的时候别人口中听到bfc这个词,于是看了各种关于bfc的文章,发现梦想天空介绍的不错,今天就在他的基础上润色一下. 一.BFC是什么? 在解释 BFC 是什么之前,需要先介绍 B ...

  7. ReferenceEquals和 == 和equals()的比较

    对于这几点的区别网上经常有各种答案,而且常常会出现答案之间是互相矛盾的.要嘛就是根本含糊的解释不清楚,只是把测试结果扔上来并没有言简意赅的写出他们之间的比较.难道面试的时候考官问你,你也要在纸上写一大 ...

  8. 获取访问者ip的方法

    package com.mi.util; import javax.servlet.http.HttpServletRequest; import org.apache.commons.lang3.S ...

  9. Redhat 7使用CentOS 7的Yum网络源

    由于redhat 的更新包只对注册的用户生效,所以需要自己手动更改成CentOS 的更新包,CentOS几乎和redhat是一样的,所以无需担心软件包是否可安装,安装之后是否有问题,另外CentOS公 ...

  10. php连接Access数据库错误及解决方法

    <?php $connstr="DRIVER={Microsoft Access Driver (*.mdb)}; DBQ=" . realpath("data.m ...