[Hadoop in Action] 第6章 编程实践
- Hadoop程序开发的独门绝技
- 在本地,伪分布和全分布模式下调试程序
- 程序输出的完整性检查和回归测试
- 日志和监控
- 性能调优
- 完整性检查
- 回归测试
- 考虑使用long而非int
import java.io.IOException;
import java.util.regex.PatternSyntaxException;
import java.util.Iterator; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class AveragingWithCombiner extends Configured implements Tool { public static class MapClass extends MapReduceBase
implements Mapper<LongWritable, Text, Text, Text> { static enum ClaimsCounters { MISSING, QUOTED }; public void map(LongWritable key, Text value,
OutputCollector<Text, Text> output,
Reporter reporter) throws IOException { String fields[] = value.toString().split(",", -20);
String country = fields[4];
String numClaims = fields[8];
if (numClaims.length() == 0) {
reporter.incrCounter(ClaimsCounters.MISSING, 1);
} else if (numClaims.startsWith("\"")) {
reporter.incrCounter(ClaimsCounters.QUOTED, 1);
} else {
output.collect(new Text(country), new Text(numClaims + ",1"));
} }
} public static class Combine extends MapReduceBase
implements Reducer<Text, Text, Text, Text> { public void reduce(Text key, Iterator<Text> values,
OutputCollector<Text, Text> output,
Reporter reporter) throws IOException { double sum = 0;
int count = 0;
while (values.hasNext()) {
String fields[] = values.next().toString().split(",");
sum += Double.parseDouble(fields[0]);
count += Integer.parseInt(fields[1]);
}
output.collect(key, new Text(sum + "," + count));
}
} public static class Reduce extends MapReduceBase
implements Reducer<Text, Text, Text, DoubleWritable> { public void reduce(Text key, Iterator<Text> values,
OutputCollector<Text, DoubleWritable> output,
Reporter reporter) throws IOException { double sum = 0;
int count = 0;
while (values.hasNext()) {
String fields[] = values.next().toString().split(",");
sum += Double.parseDouble(fields[0]);
count += Integer.parseInt(fields[1]);
}
output.collect(key, new DoubleWritable(sum/count));
}
} public int run(String[] args) throws Exception {
// Configuration processed by ToolRunner
Configuration conf = getConf(); // Create a JobConf using the processed conf
JobConf job = new JobConf(conf, AveragingWithCombiner.class); // Process custom command-line options
Path in = new Path(args[0]);
Path out = new Path(args[1]);
FileInputFormat.setInputPaths(job, in);
FileOutputFormat.setOutputPath(job, out); // Specify various job-specific parameters
job.setJobName("AveragingWithCombiner");
job.setMapperClass(MapClass.class);
job.setCombinerClass(Combine.class);
job.setReducerClass(Reduce.class); job.setInputFormat(TextInputFormat.class);
job.setOutputFormat(TextOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); // Submit the job, then poll for progress until the job is complete
JobClient.runJob(job); return 0;
} public static void main(String[] args) throws Exception {
// Let ToolRunner handle generic command-line options
int res = ToolRunner.run(new Configuration(), new AveragingWithCombiner(), args); System.exit(res);
}
}
SkipBadRecords方法
|
JobConf属性
|
setAttemptsToStartSkipping() | mapred.skip.attempts.to.start.skipping |
setMapperMaxSkipRecords() | mapred.skip.map.max.skip.records |
setReducerMaxSkipGroups() | mapred.skip.reduce.max.skip.groups |
setSkipOutputPath() | mapred.skip.out.dir |
setAutoIncrMapperProcCount() | mapred.skip.map.auto.incr.proc.count |
setAutoIncrReducerProcCount() | mapred.skip.reduce.auto.incr.proc.count |
属性
|
描述
|
mapred.compress.map.output | Boolean属性,表示mapper的输出是否被压缩 |
mapred.map.output.compression.codec | Class属性,表示哪种CompressionCodec被用于压缩mapper的输出 |
属性
|
描述
|
mapred.map.tasks.speculative.execution | 布尔属性,表示是否运行map任务猜测执行 |
mapred.reduce.tasks.speculative.execution | 布尔属性,表示是否运行reduce任务猜测执行 |
[Hadoop in Action] 第6章 编程实践的更多相关文章
- [Hadoop in Action] 第7章 细则手册
向任务传递定制参数 获取任务待定的信息 生成多个输出 与关系数据库交互 让输出做全局排序 1.向任务传递作业定制的参数 在编写Mapper和Reducer时,通常会想让一些地方可以配 ...
- [hadoop in Action] 第3章 Hadoop组件
管理HDFS中的文件 分析MapReduce框架中的组件 读写输入输出数据 1.HDFS文件操作 [命令行方式] Hadoop的文件命令采取的形式为: hadoop fs -cmd < ...
- [Hadoop in Action] 第1章 Hadoop简介
编写可扩展.分布式的数据密集型程序和基础知识 理解Hadoop和MapReduce 编写和运行一个基本的MapReduce程序 1.什么是Hadoop Hadoop是一个开源的框架,可编写和运 ...
- [Hadoop in Action] 第5章 高阶MapReduce
链接多个MapReduce作业 执行多个数据集的联结 生成Bloom filter 1.链接MapReduce作业 [顺序链接MapReduce作业] mapreduce-1 | mapr ...
- [Hadoop in Action] 第4章 编写MapReduce基础程序
基于hadoop的专利数据处理示例 MapReduce程序框架 用于计数统计的MapReduce基础程序 支持用脚本语言编写MapReduce程序的hadoop流式API 用于提升性能的Combine ...
- [Hadoop in Action] 第2章 初识Hadoop
Hadoop的结构组成 安装Hadoop及其3种工作模式:单机.伪分布和全分布 用于监控Hadoop安装的Web工具 1.Hadoop的构造模块 (1)NameNode(名字节点) ...
- 第二章 C语言编程实践
上章回顾 宏定义特点和注意细节 条件编译特点和主要用处 文件包含的路径查询规则 C语言扩展宏定义的用法 第二章 第二章 C语言编程实践 C语言编程实践 预习检查 异或的运算符是什么 宏定义最主要的特点 ...
- [Java 并发] Java并发编程实践 思维导图 - 第一章 简单介绍
阅读<Java并发编程实践>一书后整理的思维导图.
- [Java 并发] Java并发编程实践 思维导图 - 第二章 线程安全性
依据<Java并发编程实践>一书整理的思维导图.
随机推荐
- Taurus.MVC 2.0 开源发布:WebAPI开发教程
背景: 有用户反映,Tausus.MVC 能写WebAPI么? 能! 教程呢? 嗯,木有! 好吧,刚好2.0出来,就带上WEBAPI教程了! 开源地址: https://github.com/cyq1 ...
- ABP文档 - Javascript Api
文档目录 本节内容: AJAX Notification Message UI Block & Busy Event Bus Logging Other Utility Functions A ...
- xamarin DependencyService源码阅读
xamarin在面对PCL无法实现的各平台特有功能时使用了一种叫[DependencyService]的方式来实现.它使得xamarin能像原生平台一样做平台能做到的事情!主要分四个部分 接口:定义功 ...
- iOS开源项目周报0105
由OpenDigg 出品的iOS开源项目周报第四期来啦.我们的iOS开源周报集合了OpenDigg一周来新收录的优质的iOS开发方面的开源项目,方便iOS开发人员便捷的找到自己需要的项目工具等. He ...
- 比Mysqli操作数据库更简便的方式 。PDO
下面来说一下PDO 先画一张图来了解一下 mysqli是针对mysql这个数据库扩展的一个类 PDO是为了能访问更多数据库 如果出现程序需要访问其他数据库的话就可以用PDO来做 PDO数据访问抽象层1 ...
- Android消息传递之基于RxJava实现一个EventBus - RxBus
前言: 上篇文章学习了Android事件总线管理开源框架EventBus,EventBus的出现大大降低了开发成本以及开发难度,今天我们就利用目前大红大紫的RxJava来实现一下类似EventBus事 ...
- 模拟AngularJS之依赖注入
一.概述 AngularJS有一经典之处就是依赖注入,对于什么是依赖注入,熟悉spring的同学应该都非常了解了,但,对于前端而言,还是比较新颖的. 依赖注入,简而言之,就是解除硬编码,达到解偶的目的 ...
- PHP之购物车的代码
该文章记录了购物车的实现代码,仅供参考 book_sc_fns.php <?php include_once('output_fns.php'); include_once('book_fns. ...
- H5项目开发分享——用Canvas合成文字
以前曾用Canvas合成.裁剪.图片等<用H5中的Canvas等技术制作海报>.这次用Canvas来画文字. 下图中"老王考到驾照后"这几个字是画在Canvas上的,与 ...
- php批量删除
php批量删除可以实现多条或者全部数据一起删除 新建php文件 显示数据库中内容: <table width="100%" border="1" cell ...