ACM: 强化训练-Beautiful People-最长递增子序列变形-DP
199. Beautiful People
memory limit per test: 65536 KB
output: standard
To celebrate a new 2003 year, the administration of the club is planning to organize a party. However they are afraid that if two people who hate each other would simultaneouly attend the party, after a drink or two they would start a fight. So no two people who hate each other should be invited. On the other hand, to keep the club presti≥ at the apropriate level, administration wants to invite as many people as possible.
Being the only one among administration who is not afraid of touching a computer, you are to write a program which would find out whom to invite to the party.
1 1
1 2
2 1
2 2
1 4
/*
最长上升子序列的变形。 要保证Si和Bi都有严格的递增,再求最长上升子序列的元素排序。(这个S和B给满分。。) 首先想到的是贪心,以两点都升序排序,排序后从最小的往后加,但是这样忽略了其他的更优解WA的理所当然。。 再后来想了下这题是个背包问题,用dp来记录以这个点结尾的前面的子序列长度,实现过程附图:
以此往下类推
最后得到了一组ans以各个元素结尾的最大的子序列长度
最后这样找出来的顺序就是整个过程最小子序列的顺序,当然一开始id被打乱了,不要忘了把id最后对应一下。 最后还有一个问题就是元素顺序的打印,这里一开始写的递归总有点问题,最后看了下别人的题解借鉴了点用ans标记顺序的思想。 */
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define memset(x,y) memset(x,y,sizeof(x))
using namespace std;
#define MX 100005 int dp[MX],ans[MX];
int Prt[MX];
struct node {
int s,b;
int id; //标记实际的输入的顺序
} rel[MX]; int n,len; int cmp(node a,node b){
if(a.s==b.s)
return a.b>b.b;
return a.s<b.s;
} int Query(int len,int x){
int l,r,mid,rt;
l=0;r=len; //用二分的方法往前找出到达这个点的前面的最大单调上升序列的最小的值
while(r>=l){
mid=(l+r)>>1;
if(dp[mid]<x){
rt=mid+1; //找到比x小的数的后一个位置
l=mid+1;
}
else r=mid-1;
}
return rt;
} int Print(){
int j=0;
for(int i=n;i>=1;i--){
if(ans[i]==len) {
Prt[j++]=rel[i].id; //保存每个数字最小的结果
len--;
}
}
return j;//返回长度
} int main(){
while(~scanf("%d",&n)){
for(int i=1;i<=n;i++){
scanf("%d%d",&rel[i].s,&rel[i].b);
rel[i].id=i;
}
memset(ans,0);
memset(dp,0);
sort(rel+1,rel+n+1,cmp); //将得到的所有值按照 s从小到大,b的从大到小排序
len=1;
dp[1]=rel[1].b; //dp保存最各个长度的最长单调序列的最大的值
ans[1]=1;
int Q;
for(int i=2;i<=n;i++){
Q=Query(len,rel[i].b); //找到比rel[i].b小的最长单调子序列的下一个位置
ans[i]=Q; //ans[i]保存以这点为结尾的最长上升子序列的最大长度
dp[Q]=rel[i].b; //更新这个位置的最小值
len=len>Q?len:Q; //保存最大长度。
}
int flag=1;
printf("%d\n",len);
int lon=Print();
for(int i=lon-1;i>=0;i--){
if(flag)flag=0;
else printf(" ");
printf("%d",Prt[i]); //逆序输出。
}
puts("");
}
return 0;
}
ACM: 强化训练-Beautiful People-最长递增子序列变形-DP的更多相关文章
- [程序员代码面试指南]最长递增子序列(二分,DP)
题目 例:arr=[2,1,5,3,6,4,8,9,7] ,最长递增子序列为1,3,4,8,9 题解 step1:找最长连续子序列长度 dp[]存以arr[i]结尾的情况下,arr[0..i]中的最长 ...
- 最长递增子序列问题 nyoj 17单调递增最长子序列 nyoj 79拦截导弹
一, 最长递增子序列问题的描述 设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1< ...
- hunnu 11313 无重复元素序列的最长公共子序列转化成最长递增子序列 求法及证明
题目:http://acm.hunnu.edu.cn/online/?action=problem&type=show&id=11313 湖师大的比赛,见我的另一篇水题题解,这里要说的 ...
- 新疆大学ACM-ICPC程序设计竞赛五月月赛(同步赛)- 勤奋的杨老师(最长递增子序列)
链接:https://www.nowcoder.com/acm/contest/116/C来源:牛客网 题目描述 杨老师认为他的学习能力曲线是一个拱形.勤奋的他根据时间的先后顺序罗列了一个学习清单,共 ...
- (转载)最长递增子序列 O(NlogN)算法
原博文:传送门 最长递增子序列(Longest Increasing Subsequence) 下面我们简记为 LIS. 定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则 ...
- 最长公共子序列(LCS)和最长递增子序列(LIS)的求解
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...
- 最长递增子序列 O(NlogN)算法
转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个 ...
- 51nod 1134 最长递增子序列
题目链接:51nod 1134 最长递增子序列 #include<cstdio> #include<cstring> #include<algorithm> usi ...
- 动态规划 - 最长递增子序列(LIS)
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...
随机推荐
- ASP.NET MVC中Controller返回值类型ActionResult
1.返回ViewResult视图结果,将视图呈现给网页 public class TestController : Controller { //必须存在Controller\Test\Index.c ...
- Delphi ini文件读写
参考:http://www.cnblogs.com/zhangzhifeng/archive/2011/12/01/2270267.html 一.ini文件的结构 ;这是关于 ini 文件的注释 [节 ...
- djcelery的细节篇
http://blog.csdn.net/samed/article/details/50598371 随时撸一撸,要点记心间.. 1. 下面讲解一下celery.py文件的配置内容,为何要这么配置. ...
- SPOJ220 Relevant Phrases of Annihilation(后缀数组)
引用罗穗骞论文中的话: 先将n 个字符串连起来,中间用不相同的且没有出现在字符串中的字符隔开,求后缀数组.然后二分答案,再将后缀分组.判断的时候,要看是否有一组后缀在每个原来的字符串中至少出现两次,并 ...
- Git学习笔记 git revert
我们难免会因为种种原因执行一些错误的commit / push,git提供了revert命令帮助程序员修复这样的错误. 举个例子,下图是git commit 的历史记录 git revert 命令会通 ...
- 攻城狮在路上(壹) Hibernate(十)--- 映射值类型集合
一.映射Set(集):未排序,无重复. 实例代码: <set name="images" table="IMAGES" lazy="true&q ...
- android 入门-android属性介绍
android:visibility="gone" 不保留view控件所占有的空间 隐藏 android:visibility="invisible" 保留 ...
- 如何在ASP.NET 5中使用ADO.NET
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:ASP.NET 5是一个全新的平台,在这个平台上也带来一些全新的函数库.不过这并非意味 ...
- 第十八篇:在SOUI中实现PreTranslateMessage
在MFC中,通常可以通过重载CWnd::PreTranslateMessage这样一个虚函数来实现对一些窗口消息的预处理.多用于tooltip的显示控制. 在SOUI中也实现了类似的机制. 要在SOU ...
- 第七篇:创建一个SOUI的Hello World
从0开始一个SOUI项目 1.环境配置 SOUI项目本质是一个基于Win32窗口的应用程序.因此首先我们可以从Win32窗口应用程序向导创建一个简单的Win32项目. 并在第3页选择“Window应用 ...



最后得到了一组ans以各个元素结尾的最大的子序列长度