Triangle

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note: Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

思想: 经典的动态规划题。

class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle) {
vector<int> pSum(triangle.size()+1, 0);
for(int i = triangle.size()-1; i >= 0; --i)
for(int j = 0; j < triangle[i].size(); ++j)
pSum[j] = min(pSum[j]+triangle[i][j], pSum[j+1]+triangle[i][j]);
return pSum[0];
}
};

Pascal's Triangle

Given numRows, generate the first numRows of Pascal's triangle.

For example, given numRows = 5, Return

[
[1],
[1,1],
[1,2,1],
[1,3,3,1],
[1,4,6,4,1]
]
思想: 简单的动态规划。
class Solution {
public:
vector<vector<int> > generate(int numRows) {
vector<vector<int> > vec;
if(numRows <= 0) return vec; vec.push_back(vector<int>(1, 1));
if(numRows == 1) return vec; vec.push_back(vector<int>(2, 1));
if(numRows == 2) return vec; for(int row = 2; row < numRows; ++row) {
vector<int> vec2(row+1, 1);
for(int Id = 1; Id < row; ++Id)
vec2[Id] = vec[row-1][Id-1] + vec[row-1][Id];
vec.push_back(vec2);
}
return vec;
}
};

Pascal's Triangle II

Given an index k, return the kth row of the Pascal's triangle.

For example, given k = 3, Return [1,3,3,1].

Note: Could you optimize your algorithm to use only O(k) extra space?

思想: 动态规划。注意O(k)空间时,每次计算新的行时,要从右向左加。否则,会发生值的覆盖。

class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<int> vec(rowIndex+1, 1);
for(int i = 2; i <= rowIndex; ++i)
for(int j = i-1; j > 0; --j) // key, not overwrite
vec[j] += vec[j-1];
return vec;
}
};

28. Triangle && Pascal's Triangle && Pascal's Triangle II的更多相关文章

  1. pascal+sublime搭建Pascal学习环境

    一.fpc安装 1. 下载:http://www.freepascal.org/down/i386/win32.var(或者:http://download.csdn.net/detail/wenph ...

  2. leetcode—pascal triangle

    1.题目描述 Given numRows, generate the first numRows of Pascal's triangle.   For example, given numRows ...

  3. ZOJ - 4081:Little Sub and Pascal's Triangle (结论)

    Little Sub is about to take a math exam at school. As he is very confident, he believes there is no ...

  4. [leetcode] 2. Pascal's Triangle II

    我是按难度往下刷的,第二道是帕斯卡三角形二.简单易懂,题目如下: Given an index k, return the kth row of the Pascal's triangle. For ...

  5. ZOJ-Little Sub and Pascal's Triangle(思维规律)

    Little Sub is about to take a math exam at school. As he is very confident, he believes there is no ...

  6. leetcode 【 Pascal's Triangle II 】python 实现

    题目: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [ ...

  7. leetcode 【 Pascal's Triangle 】python 实现

    题目: Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,R ...

  8. Leetcode_119_Pascal's Triangle II

    本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/41851069 Given an index k, retu ...

  9. 三角形(Triangle)

    三角形(Triangle) 问题 给出一个三角形,找出从顶部至底部的最小路径和.每一步你只能移动到下一行的邻接数字. 例如,给出如下三角形: [ [2], [3,4], [6,5,7], [4,1,8 ...

随机推荐

  1. hdu 1052 (greedy algorithm) 分类: hdoj 2015-06-18 16:49 35人阅读 评论(0) 收藏

    thanks to http://acm.hdu.edu.cn/discuss/problem/post/reply.php?action=support&postid=19638&m ...

  2. 深入理解gradle编译-Android基础篇

    深入理解gradle编译-Android基础篇 导读 Gradle基于Groovy的特定领域语言(DSL)编写的一种自动化建构工具,Groovy作为一种高级语言由Java代码实现,本文将对Gradle ...

  3. struts2 标签 和 c标签的页面数据显示

    用struts2 标签显示的页面代码 <s:if test="#request.employees == null || #request.employees.size() == 0& ...

  4. 在 Xcode 6 中使用矢量图( iPhone 6 置配 UI)

    在 Xcode 6 中使用矢量图( iPhone 6 置配 UI) (本文转载:http://iosdeveloper.diandian.com/post/2014-09-25/40063062789 ...

  5. [URAL]刷题记录表

    URAL 1001.  A + B 1002.  简单题,开方计算! 1003.

  6. vmware12用 unlocker206能不能解锁 OS X系统

    先下载UnLocker2061.zip 2. 选择虚拟机右键--> 属性 3.将下载的unlocker2061解压后文件放入VMware安装目录下  选择win-install.cmd文件  右 ...

  7. KVC/KVO原理详解及编程指南

    一.简介 1.KVC简介 2.KVO简介 二.KVC相关技术 1.Key和Key Path 2.点语法和KVC 3.一对多关系(To-Many)中的集合访问器方法 4.键值验证(Key-Value V ...

  8. 帝国CMS【操作类型】说明详解

    看标签的参数时候,一般最后一个参数是操作类型说明,可是后面写的是:"操作类型说明 具体看操作类型说明", 这个操作类型说明在什么地方看啊 操作类型 说明 操作类型 说明 0 各栏目 ...

  9. Sprint第二个冲刺(第九天)

    一.Sprint 计划会议: 现在简单说一下Sprint2的进展情况:大部分功能已经完成或者正在做,此次Sprint2中最难的设计商家的数据库表格已经完成了,剩下的其他功能都是比较耗时的,现在也在抓紧 ...

  10. ✡ leetcode 164. Maximum Gap 寻找最大相邻数字差 --------- java

    Given an unsorted array, find the maximum difference between the successive elements in its sorted f ...