BZOJ3196——二逼平衡树
1、题目大意:给你一个序列,有5种操作,都有什么呢。。。
1> 区间第k小 这个直接用二分+树套树做
2> 区间小于k的有多少 这个直接用树套树做
3> 单点修改 这个直接用树套树做
4> 区间内k的前驱 这个就是1和2操作的合并,就是查询k的排名,然后就是知道他的前驱的排名,然后第k小
5> 区间内k的后继 这个和4同理
#include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> using namespace std; struct Node{ Node *ch[2]; int num, cnt, v, r; bool operator < (const Node& rhs) const{ return r < rhs.r; } inline int cmp(int x){ if(x == v) return -1; if(x < v) return 0; return 1; } inline void maintain(){ cnt = num; if(ch[0]) cnt += ch[0] -> cnt; if(ch[1]) cnt += ch[1] -> cnt; return; } } ft[5000000], *root[400000]; int tot; int a[100000]; inline void treap_rotate(Node* &o, int d){ Node *k = o -> ch[d ^ 1]; o -> ch[d ^ 1] = k -> ch[d]; k -> ch[d] = o; o -> maintain(); k -> maintain(); o = k; return; } inline void treap_insert(Node* &o, int value){ if(!o){ o = &ft[tot ++]; o -> ch[0] = o -> ch[1] = NULL; o -> num = 1; o -> v = value; o -> r = rand(); } else{ int d = o -> cmp(value); if(d == -1){ o -> num ++; } else{ treap_insert(o -> ch[d], value); if(o -> ch[d] > o) treap_rotate(o, d ^ 1); } } o -> maintain(); } inline void treap_remove(Node* &o, int value){ if(!o) return; int d = o -> cmp(value); if(d == -1){ if(o -> num > 1) o -> num --; else if(!o -> ch[0]) o = o -> ch[1]; else if(!o -> ch[1]) o = o -> ch[0]; else{ int d2; if(o -> ch[0] > o -> ch[1]) d2 = 1; else d2 = 0; treap_rotate(o, d2); treap_remove(o -> ch[d2], value); } } else{ treap_remove(o -> ch[d], value); } if(o) o -> maintain(); } inline int treap_lessk(Node* &o, int k){ if(!o) return 0; int d = o -> cmp(k); if(d == -1){ int ret = o -> num; if(o -> ch[0]) ret += o -> ch[0] -> cnt; return ret; } else if(d == 0){ return treap_lessk(o -> ch[d], k); } else{ int ss = o -> num; if(o -> ch[0]) ss += o -> ch[0] -> cnt; return treap_lessk(o -> ch[d], k) + ss; } } inline int treap_find(Node* &o, int k){ if(!o) return 0; int d = o -> cmp(k); if(d == -1) return o -> num; else return treap_find(o -> ch[d], k); } inline int segment_tree_find(int l, int r, int o, int x, int y, int k){ if(x <= l && r <= y){ return treap_find(root[o], k); } int mid = (l + r) / 2; int ret = 0; if(x <= mid) ret += segment_tree_find(l, mid, 2 * o, x, y, k); if(y > mid) ret += segment_tree_find(mid + 1, r, 2 * o + 1, x, y, k); return ret; } inline void segment_tree_add(int l, int r, int o, int x, int value){ treap_remove(root[o], a[x]); treap_insert(root[o], value); if(l == r){ a[x] = value; return; } int mid = (l + r) / 2; if(x <= mid) segment_tree_add(l, mid, 2 * o, x, value); else segment_tree_add(mid + 1, r, 2 * o + 1, x, value); } inline int segment_tree_query_lessk(int l, int r, int o, int x, int y, int k){ if(x <= l && r <= y){ return treap_lessk(root[o], k); } int mid = (l + r) / 2; int ret = 0; if(x <= mid) ret += segment_tree_query_lessk(l, mid, 2 * o, x, y, k); if(y > mid) ret += segment_tree_query_lessk(mid + 1, r, 2 * o + 1, x, y, k); return ret; } inline int segment_tree_query_NO_k(int l, int r, int o, int x, int y, int k, int n){ int L = 0, R = 100000000; while(L < R){ int mid = (L + R) / 2; if(segment_tree_query_lessk(1, n, 1, x, y, mid) < k) L = mid + 1; else R = mid; } return L; } int main(){ int n, m; scanf("%d%d", &n, &m); for(int i = 1; i <= n; i ++){ int x; scanf("%d", &x); segment_tree_add(1, n, 1, i, x); } for(int i = 1; i <= m; i ++){ int op, x, y, z; scanf("%d", &op); if(op == 1){ scanf("%d%d%d", &x, &y, &z); int ans = segment_tree_query_lessk(1, n, 1, x, y, z); ans -= segment_tree_find(1, n, 1, x, y, z); ans ++; printf("%d\n", ans); } else if(op == 2){ scanf("%d%d%d", &x, &y, &z); int ans = segment_tree_query_NO_k(1, n, 1, x, y, z, n); printf("%d\n", ans); } else if(op == 3){ scanf("%d%d", &x, &y); segment_tree_add(1, n, 1, x, y); } else if(op == 4){ scanf("%d%d%d", &x, &y, &z); int k = segment_tree_query_lessk(1, n, 1, x, y, z); k -= segment_tree_find(1, n, 1, x, y, z); int ans = segment_tree_query_NO_k(1, n, 1, x, y, k, n); printf("%d\n", ans); } else{ scanf("%d%d%d", &x, &y, &z); int k = segment_tree_query_lessk(1, n, 1, x, y, z); k ++; int ans = segment_tree_query_NO_k(1, n, 1, x, y, k, n); printf("%d\n", ans); } } return 0; }
BZOJ3196——二逼平衡树的更多相关文章
- BZOJ3196二逼平衡树——线段树套平衡树(treap)
此为平衡树系列最后一道:二逼平衡树您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名2.查询区间内排名为k的值3.修改某一位值上的数值4.查询 ...
- bzoj3196 二逼平衡树 树状数组套线段树
题目传送门 思路:树状数组套线段树模板题. 什么是树状数组套线段树,普通的树状数组每个点都是一个权值,而这里的树状数组每个点都是一颗权值线段树,我们用前缀差分的方法求得每个区间的各种信息, 其实关键就 ...
- bzoj3196 二逼平衡树 树套树(线段树套Treap)
Tyvj 1730 二逼平衡树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4697 Solved: 1798[Submit][Status][D ...
- bzoj3196 二逼平衡树
题目链接 平衡树系列最后一题 坑啊 10s时间限制跑了9764ms...还是要学一学bit套主席树啦... 经典的线段树套treap...至于第一发为什么要TLE(我不会告诉你treap插入的时候忘了 ...
- BZOJ3196 二逼平衡树 ZKW线段树套vector(滑稽)
我实在是不想再打一遍树状数组套替罪羊树了... 然后在普通平衡树瞎逛的时候找到了以前看过vector题解 于是我想:为啥不把平衡树换成vector呢??? 然后我又去学了一下ZKW线段树 就用ZKW线 ...
- [BZOJ3196] 二逼平衡树 [权值线段树套位置平衡树]
题面 洛咕题面 思路 没错我就是要不走寻常路! 看看那些外层位置数据结构,必须二分的,$O(n\log^3 n)$的做法吧! 看看那些cdq分治/树状数组套线段树的,空间$O(n\log^2 n)$挤 ...
- BZOJ3196 二逼平衡树 【线段树套平衡树】
题目 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名为k的值 3.修改某一位值上的数值 4.查询k在区间内的前驱(前驱 ...
- luogu3380/bzoj3196 二逼平衡树 (树状数组套权值线段树)
带修改区间K大值 这题有很多做法,我的做法是树状数组套权值线段树,修改查询的时候都是按着树状数组的规则找出那log(n)个线段树根,然后一起往下做 时空都是$O(nlog^2n)$的(如果离散化了的话 ...
- BZOJ3196:二逼平衡树(线段树套Splay)
Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名为k的值 3.修改某一位值上的数值 4.查询k在 ...
随机推荐
- kaili camera
#lsusb #dmesg | grep uvc #apt-get install guvcview cheese
- token生成过程
客户端登录会拿到token,然后去登录游戏服务器 了解GUID 可以了解http://blog.sina.com.cn/s/blog_5c8d13830100gku3.html // obviousl ...
- 9月20日下午JavaScript函数--递归
例题1:公园里有200个桃子,猴子每天吃掉一半以后扔掉一个,问6天以后还剩余多少桃子? var sum = 200; for(var i= 0;i<6;i++) { sum = parseInt ...
- 20145212 实验四《Andoid开发基础》
20145212 实验四<Andoid开发基础> 实验内容 安装Android Studio 运行安卓AVD模拟器 使用Android运行出模拟手机并显示自己的学号 实验过程 一.安装An ...
- JavaWeb学习笔记——开发动态WEB资源(四)打印当前使用的是get方法
该工程的名称是testhttp,功能是在页面中表格打印浏览过程中的相关头信息. 新建一个工程,然后在这个工程里面新建一个servlet,这样便可以省去编写web.xml的过程 以下是TestHttpS ...
- clearInterval,setInterval,clearTimeout,setTimeout
setInterval("f()",1000) 每隔1秒就执行一次f() clearInterval 关闭clearInterval setTimeout("f() ...
- JavaWeb学习总结(一)——JavaWeb开发入门
http://www.cnblogs.com/xdp-gacl/p/3729033.html 只为成功找方法,不为失败找借口! JavaWeb学习总结(一)--JavaWeb开发入门 一.基本概念 1 ...
- linux程序调试命令strace
strace命令用法详解: strace常用来跟踪进程执行时的系统调用和所接收的信号. 在Linux世界,进程不能直接访问硬件设备,当进程需要访问硬件设备(比如读取磁盘文件,接收网络数据等等)时,必须 ...
- ASP.NET MVC4/5 - Ajax 防止 CSRF攻击
前言 CSRF(Cross-site request forgery跨站请求伪造,也被称为“One Click Attack”或者Session Riding,通常缩写为CSRF或者XSRF,是一种对 ...
- 使用HttpFileServer自建下载服务器
如今单位办公离不开电脑,使用电脑离不开资料传输,举一个简单的例子吧,很多用户经常在电脑上编辑文件,这些文件往往打印出来给领导审阅,可是你电脑上没有打印机,这时你会想到通过优盘.网络硬盘.邮箱.QQ等方 ...