题目背景

小明过生日的时候,爸爸送给他一副乌龟棋当作礼物。

题目描述

乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数)。棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起点出发走到终点。

乌龟棋中M张爬行卡片,分成4种不同的类型(M张卡片中不一定包含所有4种类型的卡片,见样例),每种类型的卡片上分别标有1、2、3、4四个数字之一,表示使用这种卡片后,乌龟棋子将向前爬行相应的格子数。游戏中,玩家每次需要从所有的爬行卡片中选择一张之前没有使用过的爬行卡片,控制乌龟棋子前进相应的格子数,每张卡片只能使用一次。

游戏中,乌龟棋子自动获得起点格子的分数,并且在后续的爬行中每到达一个格子,就得到该格子相应的分数。玩家最终游戏得分就是乌龟棋子从起点到终点过程中到过的所有格子的分数总和。

很明显,用不同的爬行卡片使用顺序会使得最终游戏的得分不同,小明想要找到一种卡片使用顺序使得最终游戏得分最多。

现在,告诉你棋盘上每个格子的分数和所有的爬行卡片,你能告诉小明,他最多能得到多少分吗?

输入输出格式

输入格式:

输入文件的每行中两个数之间用一个空格隔开。

第1行2个正整数N和M,分别表示棋盘格子数和爬行卡片数。

第2行N个非负整数,a1a2……aN,其中ai表示棋盘第i个格子上的分数。

第3行M个整数,b1b2……bM,表示M张爬行卡片上的数字。

输入数据保证到达终点时刚好用光M张爬行卡片

输出格式:

输出只有1行,1个整数,表示小明最多能得到的分数。

输入输出样例

输入样例#1:

9 5
6 10 14 2 8 8 18 5 17
1 3 1 2 1
输出样例#1:

73

说明

每个测试点1s

小明使用爬行卡片顺序为1,1,3,1,2,得到的分数为6+10+14+8+18+17=73。注意,由于起点是1,所以自动获得第1格的分数6。

对于30%的数据有1≤N≤30,1≤M≤12。

对于50%的数据有1≤N≤120,1≤M≤50,且4种爬行卡片,每种卡片的张数不会超过20。

对于100%的数据有1≤N≤350,1≤M≤120,且4种爬行卡片,每种卡片的张数不会超过40;0≤ai≤100,1≤i≤N;1≤bi≤4,1≤i≤M。

动态规划可解

需要规划的五个量:四种卡分别使用的数量,目前所处的点

当前所处位置可以用卡的使用数量表示,所以实际只需四维

 /*NOIP2010提高组乌龟棋         SilverN*/
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int f[][][][];
int s[];//得分
int p[];//卡数量
int m,n;
int main(){
scanf("%d%d",&n,&m);
int i,j,x;
for(i=;i<=n;i++)scanf("%d",&s[i]);
for(j=;j<=m;j++){//计算卡数量
scanf("%d",&x);
p[x]++;
}
int k,h;
//枚举卡的使用数量即可,注意可以不使用卡
for(i=;i<=p[];i++)
for(j=;j<=p[];j++)
for(k=;k<=p[];k++)
for(h=;h<=p[];h++){
int dis=i+*j+*k+*h+;
if(i> && f[i-][j][k][h]>f[i][j][k][h] )f[i][j][k][h]=f[i-][j][k][h];
if(j> && f[i][j-][k][h]>f[i][j][k][h] )f[i][j][k][h]=f[i][j-][k][h];
if(k> && f[i][j][k-][h]>f[i][j][k][h] )f[i][j][k][h]=f[i][j][k-][h];
if(h> && f[i][j][k][h-]>f[i][j][k][h] )f[i][j][k][h]=f[i][j][k][h-];
f[i][j][k][h]+=s[dis];
}
printf("%d",f[p[]][p[]][p[]][p[]]);//数据保证所有卡用完以后到终点
return ;
}

NOIP2010提高组乌龟棋 -SilverN的更多相关文章

  1. 洛谷 1541 NOIp2010提高组 乌龟棋

    [题解] 很容易想到这是一个DP,f[i][j][k][l]表示4种卡片分别用了多少张,那么转移方程就是f[i][j][k][l]=Max(f[i-1][j][k][l],f[i][j-1][k][l ...

  2. NOIP2010提高组 关押罪犯 -SilverN

    (洛谷P1525) 题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用“怨气值”( ...

  3. 洛谷 P1541 乌龟棋 & [NOIP2010提高组](dp)

    传送门 解题思路 一道裸的dp. 用dp[i][j][k][kk]表示用i个1步,j个2步,k个3步,kk个4步所获得的最大价值,然后状态转移方程就要分情况讨论了(详见代码) 然后就是一开始统计一下几 ...

  4. noip2010提高组题解

    NOIP2010提高组题解 T1:机器翻译 题目大意:顺序输入n个数,有一个队列容量为m,遇到未出现元素入队,求入队次数. AC做法:直接开1000的队列模拟过程. T2:乌龟棋 题目大意:有长度为n ...

  5. NOIP2010提高组真题部分整理(没有关押罪犯)

    目录 \(NOIP2010\)提高组真题部分整理 \(T1\)机器翻译: 题目背景: 题目描述: 输入输出格式: 输入输出样例: 说明: 题解: 代码: \(T2\)乌龟棋 题目背景: 题目描述: 输 ...

  6. [NOIP2010] 提高组 洛谷P1525 关押罪犯

    刚才做并查集想到了这道以前做的题,干脆一并放上来 题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可 ...

  7. 洛谷 P1525 关押罪犯 & [NOIP2010提高组](贪心,种类并查集)

    传送门 解题思路 很显然,为了让最大值最小,肯定就是从大到小枚举,让他们分在两个监狱中,第一个不符合的就是答案. 怎样判断是否在一个监狱中呢? 很显然,就是用种类并查集. 种类并查集的讲解——团伙(很 ...

  8. [NOIP2010] 提高组 洛谷P1541 乌龟棋

    题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起 ...

  9. Noip2010提高组总结

    将Noip2010重新做了一遍,第一遍做下来居然只有290分,比当年浙江的一等线低了20分,因为各种坏习惯丢掉了许多分数,Noip时需要特别注意! T1:机器翻译 第一题直接暴力,内存足够所以不用循环 ...

随机推荐

  1. 使用XmlHelper添加节点C#代码

    接着上一篇:http://keleyi.com/a/bjac/ttssua0f.htm在前篇文章中,给出了C# XML文件操作类XmlHelper的代码,以及使用该类的一个例子,即使用XmlHelpe ...

  2. Hybrid框架UI重构之路:四、分而治之

    上文回顾:Hybird框架UI重构之路:三.工欲善其事,必先利其器 上一篇文章有说到less.grunt这两个工具,是为了css.js分模块使用的.UI框架提供给使用者的时候,是一个大的xxx.js. ...

  3. C/C++构建系统 -工具汇总

    关于构建系统可以先参考百科 http://en.wikipedia.org/wiki/List_of_build_automation_software http://www.drdobbs.com/ ...

  4. java 驼峰字符和下划线字符相互转换工具类

    public static final char UNDERLINE='_'; public static String camelToUnderline(String param){ if (par ...

  5. Condition的await-signal流程详解

    转载请注明出处:http://blog.csdn.net/luonanqin 上一篇讲了ReentrantLock的lock-unlock流程,今天这篇讲讲Condition的await-signal ...

  6. 操作系统开发系列—13.i.进程调度 ●

    上面的三个进程都是延迟相同的时间,让我们修改一下,尝试让它们延迟不同的时间. void TestA() { int i = 0; while (1) { disp_str("A." ...

  7. iOS开发--遇到ARGB/RGBA怎么办

    一.前言 在iOS开发过程中,我们经常会用16进制来表示色值,一般来说我们都是这样表示的:比如#000000表示黑色,#ffffff表示白色,但是如果我们想来个透明度呢? 接下来就让我们来了解一下怎么 ...

  8. 让UILabel的文字顶部对齐

    参考资料 http://stackoverflow.com/questions/1054558/how-do-i-vertically-align-text-within-a-uilabel 方法一 ...

  9. Mac OS X 删除文件快捷键

    今天发现自己还不知道怎么快捷的删除文件,网上找了下相关的资料. 原来删除文件的快捷键是:command+delete(把文件放到废纸篓),对于我这种笔记本用户,确实方便很多哈 还有一个命令也挺有用的: ...

  10. Web API与国际化

    软件国际化是在软件设计和文档开发过程中,使得功能和代码设计能处理多种语言和文化习俗,在创建不同语言版本时,不需要重新设计源程序代码的软件工程方法.这在很多成熟的软件开发平台中非常常见.对于.net开发 ...