[zt]矩阵求导公式
今天推导公式,发现居然有对矩阵的求导,狂汗--完全不会。不过还好网上有人总结了。吼吼,赶紧搬过来收藏备份。
基本公式:
Y = A * X --> DY/DX = A'
Y = X * A --> DY/DX = A
Y = A' * X * B --> DY/DX = A * B'
Y = A' * X' * B --> DY/DX = B * A'
1. 矩阵Y对标量x求导:
相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了
Y = [y(ij)] --> dY/dx = [dy(ji)/dx]
2. 标量y对列向量X求导:
注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量
y = f(x1,x2,..,xn) --> dy/dX = (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)'
3. 行向量Y'对列向量X求导:
注意1×M向量对N×1向量求导后是N×M矩阵。
将Y的每一列对X求偏导,将各列构成一个矩阵。
重要结论:
dX'/dX = I
d(AX)'/dX = A'
4. 列向量Y对行向量X’求导:
转化为行向量Y’对列向量X的导数,然后转置。
注意M×1向量对1×N向量求导结果为M×N矩阵。
dY/dX' = (dY'/dX)'
5. 向量积对列向量X求导运算法则:
注意与标量求导有点不同。
d(UV')/dX = (dU/dX)V' + U(dV'/dX)
d(U'V)/dX = (dU'/dX)V + (dV'/dX)U'
重要结论:
d(X'A)/dX = (dX'/dX)A + (dA/dX)X' = IA + 0X' = A
d(AX)/dX' = (d(X'A')/dX)' = (A')' = A
d(X'AX)/dX = (dX'/dX)AX + (d(AX)'/dX)X = AX + A'X
6. 矩阵Y对列向量X求导:
将Y对X的每一个分量求偏导,构成一个超向量。
注意该向量的每一个元素都是一个矩阵。
7. 矩阵积对列向量求导法则:
d(uV)/dX = (du/dX)V + u(dV/dX)
d(UV)/dX = (dU/dX)V + U(dV/dX)
重要结论:
d(X'A)/dX = (dX'/dX)A + X'(dA/dX) = IA + X'0 = A
8. 标量y对矩阵X的导数:
类似标量y对列向量X的导数,
把y对每个X的元素求偏导,不用转置。
dy/dX = [ Dy/Dx(ij) ]
重要结论:
y = U'XV = ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] = UV'
y = U'X'XU 则 dy/dX = 2XUU'
y = (XU-V)'(XU-V) 则 dy/dX = d(U'X'XU - 2V'XU + V'V)/dX = 2XUU' - 2VU' + 0 = 2(XU-V)U'
9. 矩阵Y对矩阵X的导数:
将Y的每个元素对X求导,然后排在一起形成超级矩阵。
10.乘积的导数
d(f*g)/dx=(df'/dx)g+(dg/dx)f'
结论
d(x'Ax)=(d(x'')/dx)Ax+(d(Ax)/dx)(x'')=Ax+A'x (注意:''是表示两次转置)
比较详细点的如下:
http://lzh21cen.blog.163.com/blog/static/145880136201051113615571/
http://hi.baidu.com/wangwen926/blog/item/eb189bf6b0fb702b720eec94.html
其他参考:
Contents
- Notation
- Derivatives of Linear Products
- Derivatives of Quadratic Products
Notation
- d/dx (y) is a vector whose (i) element is dy(i)/dx
- d/dx (y) is a vector whose (i) element is dy/dx(i)
- d/dx (yT) is a matrix whose (i,j) element is dy(j)/dx(i)
- d/dx (Y) is a matrix whose (i,j) element is dy(i,j)/dx
- d/dX (y) is a matrix whose (i,j) element is dy/dx(i,j)
Note that the Hermitian transpose is not used because complex conjugates are not analytic.
In the expressions below matrices and vectors A, B, C do not depend on X.
Derivatives of Linear Products
- d/dx (AYB) =A * d/dx (Y) * B
- d/dx (Ay) =A * d/dx (y)
- d/dx (xTA) =A
- d/dx (xT) =I
- d/dx (xTa) = d/dx (aTx) = a
- d/dX (aTXb) = abT
- d/dX (aTXa) = d/dX (aTXTa) = aaT
- d/dX (aTXTb) = baT
- d/dx (YZ) =Y * d/dx (Z) + d/dx (Y) * Z
Derivatives of Quadratic Products
- d/dx (Ax+b)TC(Dx+e) = ATC(Dx+e) + DTCT(Ax+b)
- d/dx (xTCx) = (C+CT)x
- [C: symmetric]: d/dx (xTCx) = 2Cx
- d/dx (xTx) = 2x
- d/dx (Ax+b)T (Dx+e) = AT (Dx+e) + DT (Ax+b)
- d/dx (Ax+b)T (Ax+b) = 2AT (Ax+b)
- [C: symmetric]: d/dx (Ax+b)TC(Ax+b) = 2ATC(Ax+b)
- d/dX (aTXTXb) = X(abT + baT)
- d/dX (aTXTXa) = 2XaaT
- d/dX (aTXTCXb) = CTXabT + CXbaT
- d/dX (aTXTCXa) = (C + CT)XaaT
- [C:Symmetric] d/dX (aTXTCXa) = 2CXaaT
- d/dX ((Xa+b)TC(Xa+b)) = (C+CT)(Xa+b)aT
Derivatives of Cubic Products
- d/dx (xTAxxT) = (A+AT)xxT+xTAxI
Derivatives of Inverses
- d/dx (Y-1) = -Y-1d/dx (Y)Y-1
Derivative of Trace
Note: matrix dimensions must result in an n*n argument for tr().
- d/dX (tr(X)) = I
- d/dX (tr(Xk)) =k(Xk-1)T
- d/dX (tr(AXk)) = SUMr=0:k-1(XrAXk-r-1)T
- d/dX (tr(AX-1B)) = -(X-1BAX-1)T
- d/dX (tr(AX-1)) =d/dX (tr(X-1A)) = -X-TATX-T
- d/dX (tr(ATXBT)) = d/dX (tr(BXTA)) = AB
- d/dX (tr(XAT)) = d/dX (tr(ATX)) =d/dX (tr(XTA)) = d/dX (tr(AXT)) = A
- d/dX (tr(AXBXT)) = ATXBT + AXB
- d/dX (tr(XAXT)) = X(A+AT)
- d/dX (tr(XTAX)) = XT(A+AT)
- d/dX (tr(AXTX)) = (A+AT)X
- d/dX (tr(AXBX)) = ATXTBT + BTXTAT
- [C:symmetric] d/dX (tr((XTCX)-1A) = d/dX (tr(A (XTCX)-1) = -(CX(XTCX)-1)(A+AT)(XTCX)-1
- [B,C:symmetric] d/dX (tr((XTCX)-1(XTBX)) = d/dX (tr( (XTBX)(XTCX)-1) = -2(CX(XTCX)-1)XTBX(XTCX)-1 + 2BX(XTCX)-1
Derivative of Determinant
Note: matrix dimensions must result in an n*n argument for det().
- d/dX (det(X)) = d/dX (det(XT)) = det(X)*X-T
- d/dX (det(AXB)) = det(AXB)*X-T
- d/dX (ln(det(AXB))) = X-T
- d/dX (det(Xk)) = k*det(Xk)*X-T
- d/dX (ln(det(Xk))) = kX-T
- [Real] d/dX (det(XTCX)) = det(XTCX)*(C+CT)X(XTCX)-1
- [C: Real,Symmetric] d/dX (det(XTCX)) = 2det(XTCX)* CX(XTCX)-1
- [C: Real,Symmetricc] d/dX (ln(det(XTCX))) = 2CX(XTCX)-1
Jacobian
If y is a function of x, then dyT/dx is the Jacobian matrix of y with respect to x.
Its determinant, |dyT/dx|, is the Jacobian of y with respect to x and represents the ratio of the hyper-volumes dy and dx. The Jacobian occurs when changing variables in an integration: Integral(f(y)dy)=Integral(f(y(x)) |dyT/dx| dx).
Hessian matrix
If f is a function of x then the symmetric matrix d2f/dx2 = d/dxT(df/dx) is the Hessian matrix of f(x). A value of x for which df/dx = 0 corresponds to a minimum, maximum or saddle point according to whether the Hessian is positive definite, negative definite or indefinite.
- d2/dx2 (aTx) = 0
- d2/dx2 (Ax+b)TC(Dx+e) = ATCD + DTCTA
- d2/dx2 (xTCx) = C+CT
- d2/dx2 (xTx) = 2I
- d2/dx2 (Ax+b)T (Dx+e) = ATD + DTA
- d2/dx2 (Ax+b)T (Ax+b) = 2ATA
- [C: symmetric]: d2/dx2 (Ax+b)TC(Ax+b) = 2ATCA
http://www.stanford.edu/~dattorro/matrixcalc.pdf
http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.AppD.d/IFEM.AppD.pdf
[zt]矩阵求导公式的更多相关文章
- 机器学习基石:Homework #0 SVD相关&常用矩阵求导公式
- AI 矩阵求导
矩阵求导 参考链接: https://en.wikipedia.org/wiki/Matrix_calculus#Scalar-by-vector_identities
- Floating-Point Hazard【求导公式】
Floating-Point Hazard 题目链接(点击) 题目描述 Given the value of low, high you will have to find the value of ...
- 【Math】矩阵求导
https://en.wikipedia.org/wiki/Matrix_calculus http://blog.sina.com.cn/s/blog_7959e7ed0100w2b3.html
- 关于 RNN 循环神经网络的反向传播求导
关于 RNN 循环神经网络的反向传播求导 本文是对 RNN 循环神经网络中的每一个神经元进行反向传播求导的数学推导过程,下面还使用 PyTorch 对导数公式进行编程求证. RNN 神经网络架构 一个 ...
- OO_BLOG1_简单表达式求导问题总结
作业1-1 包含简单幂函数的多项式导函数的求解 I. 基于度量的程序结构分析 1)程序结构与基本度量统计图 2)分析 本人的第一次作业的程序实现逻辑十分简单,但是OOP的色彩并不强烈,程序耦合度过 ...
- 向量的L2范数求导
回归中最为基础的方法, 最小二乘法. \[ \begin{align*} J_{LS}{(\theta)} &= \frac { 1 }{ 2 } { \left\| A\vec { x } ...
- 2019 OO第一单元总结(表达式求导)
一. 基于度量的程序结构分析 1. 第一次作业 这次作业是我上手的第一个java程序,使用了4个类来实现功能.多项式采用两个arraylist来存,系数和幂指数一一对应. private ArrayL ...
- Pytorch之Variable求导机制
自动求导机制是pytorch中非常重要的性质,免去了手动计算导数,为构建模型节省了时间.下面介绍自动求导机制的基本用法. #自动求导机制 import torch from torch.autogra ...
随机推荐
- HTML5——摒弃插件和前端框架的异步文件上传
之前我从来没有体会到HTML5的便利,直到这次需要一个异步上传的功能功能.一开始我以为文件的一些声明必须为HTML5才管用,后来才知道添加了很多以前没有的标签,并可以直接播放视频,音频等.可以不再使用 ...
- mageView图片显示出来 ()
ImageView图片显示出来: igSign 是 ImageView的实例 igSign.setImageDrawable(getResources().getDrawable(R.drawable ...
- PHP模拟POST请求,获取response内容
/* * 模拟POST请求,获取response内容 */ protected function curl($url, $type, $header, $data) { $CURL_OPTS = ar ...
- WORD2007多级列表
转自玄鸟翩翩 http://hi.baidu.com/shine_yen http://hi.baidu.com/shine_yen/item/01ff2255043bc1aeacc85722 用Wo ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees DP
C. Coloring Trees ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the pa ...
- Linux(centos)如何安装Zend Optimizer Zend Guard Loader
很多php开源系统都是基于Zend Optimizer的,所以我们需要先安装Zend Optimizer.但在php5.3之后Zend Optimizer被Zend Guard Loader 取代了, ...
- python 多重继承
多重继承 除了从一个父类继承外,Python允许从多个父类继承,称为多重继承. 多重继承的继承链就不是一棵树了,它像这样: class A(object): def __init__(self, a) ...
- 深圳浩瀚技术有限公司(haohantech)推出的无线移动批发管理PDA解决方案------无线移动POS销售开单系统
办好大型行业展会/交易会使其发挥强大的营销广告宣传作用从而为企业带来巨大的经济效益是每个参展企业的美好愿望. 由于行业内有影响力的展会每年屈指可数, 甚至很多情况下每年就只有一到两次, 如果没能够很好 ...
- A - The Moronic Cowmpouter
Description Inexperienced in the digital arts, the cows tried to build a calculating engine (yes, it ...
- Codeforces 677E Vanya and Balloons(DP + 一些技巧)
题目大概说给一张地图,地图每个格子都有0到9中的某一个数字.现在要在一个格子放炸弹,炸弹爆炸后水柱有两种扩展方式,一种是上.下.左.右,另一种是左上.右下.右上.左下,且四个方向的长度都一样.问放哪个 ...