ruby 正则表达式 ruby-doc原文
原文链接:http://www.ruby-doc.org/core-1.9.3/Regexp.html
Regexp
A Regexp holds a regular expression, used to match a pattern against strings. Regexps are created using the /.../ and %r{...} literals, and by the Regexp::new constructor.
Regular expressions (regexps) are patterns which describe the contents of a string. They’re used for testing whether a string contains a given pattern, or extracting the portions that match. They are created with the /pat/ and %r{pat} literals or the Regexp.new constructor.
A regexp is usually delimited with forward slashes (/). For example:
/hay/ =~ 'haystack' #=> 0
/y/.match('haystack') #=> #<MatchData "y">
If a string contains the pattern it is said to match. A literal string matches itself.
# 'haystack' does not contain the pattern 'needle', so doesn't match.
/needle/.match('haystack') #=> nil
# 'haystack' does contain the pattern 'hay', so it matches
/hay/.match('haystack') #=> #<MatchData "hay">
Specifically, /st/ requires that the string contains the letter s followed by the letter t, so it matches haystack, also.
Metacharacters and Escapes¶ ↑
The following are metacharacters (, ), [, ], {, }, ., ?, +, *. They have a specific meaning when appearing in a pattern. To match them literally they must be backslash-escaped. To match a backslash literally backslash-escape that: <tt>\\</tt>.
/1 \+ 2 = 3\?/.match('Does 1 + 2 = 3?') #=> #<MatchData "1 + 2 = 3?">
Patterns behave like double-quoted strings so can contain the same backslash escapes.
/\s\u{6771 4eac 90fd}/.match("Go to 東京都")
#=> #<MatchData " 東京都">
Arbitrary Ruby expressions can be embedded into patterns with the #{...} construct.
place = "東京都"
/#{place}/.match("Go to 東京都")
#=> #<MatchData "東京都">
Character Classes¶ ↑
A character class is delimited with square brackets ([, ]) and lists characters that may appear at that point in the match. /[ab]/ means a or b, as opposed to /ab/ which means a followed by b.
/W[aeiou]rd/.match("Word") #=> #<MatchData "Word">
Within a character class the hyphen (-) is a metacharacter denoting an inclusive range of characters. [abcd] is equivalent to [a-d]. A range can be followed by another range, so [abcdwxyz] is equivalent to [a-dw-z]. The order in which ranges or individual characters appear inside a character class is irrelevant.
/[0-9a-f]/.match('9f') #=> #<MatchData "9">
/[9f]/.match('9f') #=> #<MatchData "9">
If the first character of a character class is a caret (^) the class is inverted: it matches any character except those named.
/[^a-eg-z]/.match('f') #=> #<MatchData "f">
A character class may contain another character class. By itself this isn’t useful because [a-z[0-9]] describes the same set as [a-z0-9]. However, character classes also support the && operator which performs set intersection on its arguments. The two can be combined as follows:
/[a-w&&[^c-g]z]/ # ([a-w] AND ([^c-g] OR z))
# This is equivalent to:
/[abh-w]/
The following metacharacters also behave like character classes:
/./- Any character except a newline././m- Any character (themmodifier enables multiline mode)/\w/- A word character ([a-zA-Z0-9_])/\W/- A non-word character ([^a-zA-Z0-9_])/\d/- A digit character ([0-9])/\D/- A non-digit character ([^0-9])/\h/- A hexdigit character ([0-9a-fA-F])/\H/- A non-hexdigit character ([^0-9a-fA-F])/\s/- A whitespace character:/[ \t\r\n\f]//\S/- A non-whitespace character:/[^ \t\r\n\f]/
POSIX bracket expressions are also similar to character classes. They provide a portable alternative to the above, with the added benefit that they encompass non-ASCII characters. For instance, /\d/ matches only the ASCII decimal digits (0-9); whereas /[[:digit:]]/ matches any character in the Unicode Nd category.
/[[:alnum:]]/- Alphabetic and numeric character/[[:alpha:]]/- Alphabetic character/[[:blank:]]/- Space or tab/[[:cntrl:]]/- Control character/[[:digit:]]/- Digit/[[:graph:]]/- Non-blank character (excludes spaces, control characters, and similar)/[[:lower:]]/- Lowercase alphabetical character/[[:print:]]/- Like [:graph:], but includes the space character/[[:punct:]]/- Punctuation character/[[:space:]]/- Whitespace character ([:blank:], newline,carriage return, etc.)
/[[:upper:]]/- Uppercase alphabetical/[[:xdigit:]]/- Digit allowed in a hexadecimal number (i.e., 0-9a-fA-F)
Ruby also supports the following non-POSIX character classes:
/[[:word:]]/- A character in one of the following Unicode general categories Letter, Mark, Number, Connector_Punctuation/[[:ascii:]]/- A character in the ASCII character set# U+06F2 is "EXTENDED ARABIC-INDIC DIGIT TWO"
/[[:digit:]]/.match("\u06F2") #=> #<MatchData "\u{06F2}">
/[[:upper:]][[:lower:]]/.match("Hello") #=> #<MatchData "He">
/[[:xdigit:]][[:xdigit:]]/.match("A6") #=> #<MatchData "A6">
Repetition¶ ↑
The constructs described so far match a single character. They can be followed by a repetition metacharacter to specify how many times they need to occur. Such metacharacters are called quantifiers.
*- Zero or more times+- One or more times?- Zero or one times (optional){n}- Exactly n times{n,}- n or more times{,m}- m or less times{n,m}- At least n and at most m times# At least one uppercase character ('H'), at least one lowercase
# character ('e'), two 'l' characters, then one 'o'
"Hello".match(/[[:upper:]]+[[:lower:]]+l{2}o/) #=> #<MatchData "Hello">
Repetition is greedy by default: as many occurrences as possible are matched while still allowing the overall match to succeed. By contrast, lazy matching makes the minimal amount of matches necessary for overall success. A greedy metacharacter can be made lazy by following it with ?.
# Both patterns below match the string. The first uses a greedy
# quantifier so '.+' matches '<a><b>'; the second uses a lazy
# quantifier so '.+?' matches '<a>'.
/<.+>/.match("<a><b>") #=> #<MatchData "<a><b>">
/<.+?>/.match("<a><b>") #=> #<MatchData "<a>">
A quantifier followed by + matches possessively: once it has matched it does not backtrack. They behave like greedy quantifiers, but having matched they refuse to “give up” their match even if this jeopardises the overall match.
Capturing¶ ↑
Parentheses can be used for capturing. The text enclosed by the n<sup>th</sup> group of parentheses can be subsequently referred to with n. Within a pattern use the backreference </tt>n; outside of the pattern use <tt>MatchData[n].
# 'at' is captured by the first group of parentheses, then referred to
# later with \1
/[csh](..) [csh]\1 in/.match("The cat sat in the hat")
#=> #<MatchData "cat sat in" 1:"at">
# Regexp#match returns a MatchData object which makes the captured
# text available with its #[] method.
/[csh](..) [csh]\1 in/.match("The cat sat in the hat")[1] #=> 'at'
Capture groups can be referred to by name when defined with the (?<name>) or (?'name') constructs.
/\$(?<dollars>\d+)\.(?<cents>\d+)/.match("$3.67")
=> #<MatchData "$3.67" dollars:"3" cents:"67">
/\$(?<dollars>\d+)\.(?<cents>\d+)/.match("$3.67")[:dollars] #=> "3"
Named groups can be backreferenced with \k<name>, where name is the group name.
/(?<vowel>[aeiou]).\k<vowel>.\k<vowel>/.match('ototomy')
#=> #<MatchData "ototo" vowel:"o">
Note: A regexp can't use named backreferences and numbered backreferences simultaneously.
When named capture groups are used with a literal regexp on the left-hand side of an expression and the =~ operator, the captured text is also assigned to local variables with corresponding names.
/\$(?<dollars>\d+)\.(?<cents>\d+)/ =~ "$3.67" #=> 0
dollars #=> "3"
Grouping¶ ↑
Parentheses also group the terms they enclose, allowing them to be quantified as one atomic whole.
# The pattern below matches a vowel followed by 2 word characters:
# 'aen'
/[aeiou]\w{2}/.match("Caenorhabditis elegans") #=> #<MatchData "aen">
# Whereas the following pattern matches a vowel followed by a word
# character, twice, i.e. <tt>[aeiou]\w[aeiou]\w</tt>: 'enor'.
/([aeiou]\w){2}/.match("Caenorhabditis elegans")
#=> #<MatchData "enor" 1:"or">
The (?:…) construct provides grouping without capturing. That is, it combines the terms it contains into an atomic whole without creating a backreference. This benefits performance at the slight expense of readabilty.
# The group of parentheses captures 'n' and the second 'ti'. The
# second group is referred to later with the backreference \2
/I(n)ves(ti)ga\2ons/.match("Investigations")
#=> #<MatchData "Investigations" 1:"n" 2:"ti">
# The first group of parentheses is now made non-capturing with '?:',
# so it still matches 'n', but doesn't create the backreference. Thus,
# the backreference \1 now refers to 'ti'.
/I(?:n)ves(ti)ga\1ons/.match("Investigations")
#=> #<MatchData "Investigations" 1:"ti">
Atomic Grouping¶ ↑
Grouping can be made atomic with (?>pat). This causes the subexpression pat to be matched independently of the rest of the expression such that what it matches becomes fixed for the remainder of the match, unless the entire subexpression must be abandoned and subsequently revisited. In this way pat is treated as a non-divisible whole. Atomic grouping is typically used to optimise patterns so as to prevent the regular expression engine from backtracking needlesly.
# The <tt>"</tt> in the pattern below matches the first character of
# the string, then <tt>.*</tt> matches <i>Quote"</i>. This causes the
# overall match to fail, so the text matched by <tt>.*</tt> is
# backtracked by one position, which leaves the final character of the
# string available to match <tt>"</tt>
/".*"/.match('"Quote"') #=> #<MatchData "\"Quote\"">
# If <tt>.*</tt> is grouped atomically, it refuses to backtrack
# <i>Quote"</i>, even though this means that the overall match fails
/"(?>.*)"/.match('"Quote"') #=> nil
Subexpression Calls¶ ↑
The \g<name> syntax matches the previous subexpression named name, which can be a group name or number, again. This differs from backreferences in that it re-executes the group rather than simply trying to re-match the same text.
# Matches a <i>(</i> character and assigns it to the <tt>paren</tt>
# group, tries to call that the <tt>paren</tt> sub-expression again
# but fails, then matches a literal <i>)</i>.
/\A(?<paren>\(\g<paren>*\))*\z/ =~ '()' /\A(?<paren>\(\g<paren>*\))*\z/ =~ '(())' #=> 0
# ^1
# ^2
# ^3
# ^4
# ^5
# ^6
# ^7
# ^8
# ^9
# ^10
Matches at the beginning of the string, i.e. before the first character.
Enters a named capture group called
parenMatches a literal (, the first character in the string
Calls the
parengroup again, i.e. recurses back to the second stepRe-enters the
parengroupMatches a literal (, the second character in the string
Try to call
parena third time, but fail because doing so would prevent an overall successful matchMatch a literal ), the third character in the string. Marks the end of the second recursive call
Match a literal ), the fourth character in the string
Match the end of the string
Alternation¶ ↑
The vertical bar metacharacter (|) combines two expressions into a single one that matches either of the expressions. Each expression is an alternative.
/\w(and|or)\w/.match("Feliformia") #=> #<MatchData "form" 1:"or">
/\w(and|or)\w/.match("furandi") #=> #<MatchData "randi" 1:"and">
/\w(and|or)\w/.match("dissemblance") #=> nil
Character Properties¶ ↑
The \p{} construct matches characters with the named property, much like POSIX bracket classes.
/\p{Alnum}/- Alphabetic and numeric character/\p{Alpha}/- Alphabetic character/\p{Blank}/- Space or tab/\p{Cntrl}/- Control character/\p{Digit}/- Digit/\p{Graph}/- Non-blank character (excludes spaces, control characters, and similar)/\p{Lower}/- Lowercase alphabetical character/\p{Print}/- Like\p{Graph}, but includes the space character/\p{Punct}/- Punctuation character/\p{Space}/- Whitespace character ([:blank:], newline, carriage return, etc.)/\p{Upper}/- Uppercase alphabetical/\p{XDigit}/- Digit allowed in a hexadecimal number (i.e., 0-9a-fA-F)/\p{Word}/- A member of one of the following Unicode general category Letter, Mark, Number, Connector_Punctuation/\p{ASCII}/- A character in the ASCII character set/\p{Any}/- Any Unicode character (including unassigned characters)/\p{Assigned}/- An assigned character
A Unicode character’s General Category value can also be matched with \p{Ab} where Ab is the category’s abbreviation as described below:
/\p{L}/- 'Letter'/\p{Ll}/- 'Letter: Lowercase'/\p{Lm}/- 'Letter: Mark'/\p{Lo}/- 'Letter: Other'/\p{Lt}/- 'Letter: Titlecase'/\p{Lu}/- 'Letter: Uppercase/\p{Lo}/- 'Letter: Other'/\p{M}/- 'Mark'/\p{Mn}/- 'Mark: Nonspacing'/\p{Mc}/- 'Mark: Spacing Combining'/\p{Me}/- 'Mark: Enclosing'/\p{N}/- 'Number'/\p{Nd}/- 'Number: Decimal Digit'/\p{Nl}/- 'Number: Letter'/\p{No}/- 'Number: Other'/\p{P}/- 'Punctuation'/\p{Pc}/- 'Punctuation: Connector'/\p{Pd}/- 'Punctuation: Dash'/\p{Ps}/- 'Punctuation: Open'/\p{Pe}/- 'Punctuation: Close'/\p{Pi}/- 'Punctuation: Initial Quote'/\p{Pf}/- 'Punctuation: Final Quote'/\p{Po}/- 'Punctuation: Other'/\p{S}/- 'Symbol'/\p{Sm}/- 'Symbol: Math'/\p{Sc}/- 'Symbol: Currency'/\p{Sc}/- 'Symbol: Currency'/\p{Sk}/- 'Symbol: Modifier'/\p{So}/- 'Symbol: Other'/\p{Z}/- 'Separator'/\p{Zs}/- 'Separator: Space'/\p{Zl}/- 'Separator: Line'/\p{Zp}/- 'Separator: Paragraph'/\p{C}/- 'Other'/\p{Cc}/- 'Other: Control'/\p{Cf}/- 'Other: Format'/\p{Cn}/- 'Other: Not Assigned'/\p{Co}/- 'Other: Private Use'/\p{Cs}/- 'Other: Surrogate'
Lastly, \p{} matches a character’s Unicode script. The following scripts are supported: Arabic, Armenian, Balinese, Bengali, Bopomofo, Braille, Buginese, Buhid, Canadian_Aboriginal, Carian, Cham, Cherokee, Common, Coptic, Cuneiform, Cypriot, Cyrillic, Deseret, Devanagari, Ethiopic, Georgian, Glagolitic, Gothic, Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hebrew, Hiragana, Inherited, Kannada, Katakana, Kayah_Li, Kharoshthi, Khmer, Lao, Latin, Lepcha, Limbu, Linear_B, Lycian, Lydian, Malayalam, Mongolian, Myanmar, New_Tai_Lue, Nko, Ogham, Ol_Chiki, Old_Italic, Old_Persian, Oriya, Osmanya, Phags_Pa, Phoenician, Rejang, Runic, Saurashtra, Shavian, Sinhala, Sundanese, Syloti_Nagri, Syriac, Tagalog, Tagbanwa, Tai_Le, Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh, Ugaritic, Vai, and Yi.
# Unicode codepoint U+06E9 is named "ARABIC PLACE OF SAJDAH" and
# belongs to the Arabic script.
/\p{Arabic}/.match("\u06E9") #=> #<MatchData "\u06E9">
All character properties can be inverted by prefixing their name with a caret (^).
# Letter 'A' is not in the Unicode Ll (Letter; Lowercase) category, so
# this match succeeds
/\p{^Ll}/.match("A") #=> #<MatchData "A">
Anchors¶ ↑
Anchors are metacharacter that match the zero-width positions between characters, anchoring the match to a specific position.
^- Matches beginning of line$- Matches end of line\A- Matches beginning of string.\Z- Matches end of string. If string ends with a newline, it matches just before newline\z- Matches end of string\G- Matches point where last match finished\b- Matches word boundaries when outside brackets; backspace (0x08) when inside brackets\B- Matches non-word boundaries(?=pat)- Positive lookahead assertion: ensures that the following characters match pat, but doesn't include those characters in the matched text(?!pat)- Negative lookahead assertion: ensures that the following characters do not match pat, but doesn't include those characters in the matched text(?<=pat)- Positive lookbehind assertion: ensures that the preceding characters match pat, but doesn't include those characters in the matched text(?<!pat)- Negative lookbehind assertion: ensures that the preceding characters do not match pat, but doesn't include those characters in the matched text# If a pattern isn't anchored it can begin at any point in the string
/real/.match("surrealist") #=> #<MatchData "real">
# Anchoring the pattern to the beginning of the string forces the
# match to start there. 'real' doesn't occur at the beginning of the
# string, so now the match fails
/\Areal/.match("surrealist") #=> nil
# The match below fails because although 'Demand' contains 'and', the
pattern does not occur at a word boundary.
/\band/.match("Demand")
# Whereas in the following example 'and' has been anchored to a
# non-word boundary so instead of matching the first 'and' it matches
# from the fourth letter of 'demand' instead
/\Band.+/.match("Supply and demand curve") #=> #<MatchData "and curve">
# The pattern below uses positive lookahead and positive lookbehind to
# match text appearing in <b></b> tags without including the tags in the
# match
/(?<=<b>)\w+(?=<\/b>)/.match("Fortune favours the <b>bold</b>")
#=> #<MatchData "bold">
Options¶ ↑
The end delimiter for a regexp can be followed by one or more single-letter options which control how the pattern can match.
/pat/i- Ignore case/pat/m- Treat a newline as a character matched by./pat/x- Ignore whitespace and comments in the pattern/pat/o- Perform#{}interpolation only once
i, m, and x can also be applied on the subexpression level with the (?on-off) construct, which enables options on, and disables options off for the expression enclosed by the parentheses.
/a(?i:b)c/.match('aBc') #=> #<MatchData "aBc">
/a(?i:b)c/.match('abc') #=> #<MatchData "abc">
Free-Spacing Mode and Comments¶ ↑
As mentioned above, the x option enables free-spacing mode. Literal white space inside the pattern is ignored, and the octothorpe (#) character introduces a comment until the end of the line. This allows the components of the pattern to be organised in a potentially more readable fashion.
# A contrived pattern to match a number with optional decimal places
float_pat = /\A
[[:digit:]]+ # 1 or more digits before the decimal point
(\. # Decimal point
[[:digit:]]+ # 1 or more digits after the decimal point
)? # The decimal point and following digits are optional
\Z/
float_pat.match('3.14') #=> #<MatchData "3.14" 1:".14">
Note: To match whitespace in an x pattern use an escape such as \s or \p{Space}.
Comments can be included in a non-x pattern with the (?#comment) construct, where comment is arbitrary text ignored by the regexp engine.
Encoding¶ ↑
Regular expressions are assumed to use the source encoding. This can be overridden with one of the following modifiers.
/pat/u- UTF-8/pat/e- EUC-JP/pat/s- Windows-31J/pat/n- ASCII-8BIT
A regexp can be matched against a string when they either share an encoding, or the regexp’s encoding is US-ASCII and the string’s encoding is ASCII-compatible.
If a match between incompatible encodings is attempted an Encoding::CompatibilityError exception is raised.
The Regexp#fixed_encoding? predicate indicates whether the regexp has a fixed encoding, that is one incompatible with ASCII. A regexp’s encoding can be explicitly fixed by supplying Regexp::FIXEDENCODING as the second argument of Regexp.new:
r = Regexp.new("a".force_encoding("iso-8859-1"),Regexp::FIXEDENCODING)
r =~"a\u3042"
#=> Encoding::CompatibilityError: incompatible encoding regexp match
(ISO-8859-1 regexp with UTF-8 string)
Performance¶ ↑
Certain pathological combinations of constructs can lead to abysmally bad performance.
Consider a string of 25 as, a d, 4 as, and a c.
s = 'a' * 25 + 'd' 'a' * 4 + 'c'
#=> "aaaaaaaaaaaaaaaaaaaaaaaaadadadadac"
The following patterns match instantly as you would expect:
/(b|a)/ =~ s #=> 0
/(b|a+)/ =~ s #=> 0
/(b|a+)*\/ =~ s #=> 0
However, the following pattern takes appreciably longer:
/(b|a+)*c/ =~ s #=> 32
This happens because an atom in the regexp is quantified by both an immediate + and an enclosing * with nothing to differentiate which is in control of any particular character. The nondeterminism that results produces super-linear performance. (Consult Mastering Regular Expressions (3rd ed.), pp 222, by Jeffery Friedl, for an in-depth analysis). This particular case can be fixed by use of atomic grouping, which prevents the unnecessary backtracking:
(start = Time.now) && /(b|a+)*c/ =~ s && (Time.now - start)
#=> 24.702736882
(start = Time.now) && /(?>b|a+)*c/ =~ s && (Time.now - start)
#=> 0.000166571
A similar case is typified by the following example, which takes approximately 60 seconds to execute for me:
# Match a string of 29 <i>a</i>s against a pattern of 29 optional
# <i>a</i>s followed by 29 mandatory <i>a</i>s.
Regexp.new('a?' * 29 + 'a' * 29) =~ 'a' * 29
The 29 optional as match the string, but this prevents the 29 mandatory as that follow from matching. Ruby must then backtrack repeatedly so as to satisfy as many of the optional matches as it can while still matching the mandatory 29. It is plain to us that none of the optional matches can succeed, but this fact unfortunately eludes Ruby.
One approach for improving performance is to anchor the match to the beginning of the string, thus significantly reducing the amount of backtracking needed.
Regexp.new('\A' 'a?' * 29 + 'a' * 29).match('a' * 29)
#=> #<MatchData "aaaaaaaaaaaaaaaaaaaaaaaaaaaaa">
Constants
Public Class Methods
Synonym for Regexp.new
Escapes any characters that would have special meaning in a regular expression. Returns a new escaped string, or self if no characters are escaped. For any string, Regexp.new(Regexp.escape(str))=~str will be true.
Regexp.escape('\*?{}.') #=> \\\*\?\{\}\.
The first form returns the MatchData object generated by the last successful pattern match. Equivalent to reading the global variable $~. The second form returns the nth field in this MatchData object. n can be a string or symbol to reference a named capture.
Note that the last_match is local to the thread and method scope of the method that did the pattern match.
/c(.)t/ =~ 'cat' #=> 0
Regexp.last_match #=> #<MatchData "cat" 1:"a">
Regexp.last_match(0) #=> "cat"
Regexp.last_match(1) #=> "a"
Regexp.last_match(2) #=> nil /(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/ =~ "var = val"
Regexp.last_match #=> #<MatchData "var = val" lhs:"var" rhs:"val">
Regexp.last_match(:lhs) #=> "var"
Regexp.last_match(:rhs) #=> "val"
Constructs a new regular expression from pattern, which can be either a String or a Regexp (in which case that regexp’s options are propagated, and new options may not be specified (a change as of Ruby 1.8). If options is a Fixnum, it should be one or more of the constants Regexp::EXTENDED, Regexp::IGNORECASE, and Regexp::MULTILINE, or-ed together. Otherwise, if options is not nil, the regexp will be case insensitive. When the lang parameter is `n’ or `N’ sets the regexp no encoding.
r1 = Regexp.new('^a-z+:\s+\w+') #=> /^a-z+:\s+\w+/
r2 = Regexp.new('cat', true) #=> /cat/i
r3 = Regexp.new('dog', Regexp::EXTENDED) #=> /dog/x
r4 = Regexp.new(r2) #=> /cat/i
Escapes any characters that would have special meaning in a regular expression. Returns a new escaped string, or self if no characters are escaped. For any string, Regexp.new(Regexp.escape(str))=~str will be true.
Regexp.escape('\*?{}.') #=> \\\*\?\{\}\.
Try to convert obj into a Regexp, using to_regexp method. Returns converted regexp or nil if obj cannot be converted for any reason.
Regexp.try_convert(/re/) #=> /re/
Regexp.try_convert("re") #=> nil o = Object.new
Regexp.try_convert(o) #=> nil
def o.to_regexp() /foo/ end
Regexp.try_convert(o) #=> /foo/
Return a Regexp object that is the union of the given patterns, i.e., will match any of its parts. The patterns can be Regexp objects, in which case their options will be preserved, or Strings. If no patterns are given, returns /(?!)/. The behavior is unspecified if any given pattern contains capture.
Regexp.union #=> /(?!)/
Regexp.union("penzance") #=> /penzance/
Regexp.union("a+b*c") #=> /a\+b\*c/
Regexp.union("skiing", "sledding") #=> /skiing|sledding/
Regexp.union(["skiing", "sledding"]) #=> /skiing|sledding/
Regexp.union(/dogs/, /cats/) #=> /(?-mix:dogs)|(?i-mx:cats)/
Public Instance Methods
Equality—Two regexps are equal if their patterns are identical, they have the same character set code, and their casefold? values are the same.
/abc/ == /abc/ #=> false
/abc/ == /abc/ #=> false
/abc/ == /abc/ #=> false
/abc/ == /abc/ #=> false
Case Equality—Synonym for Regexp#=~ used in case statements.
a = "HELLO"
case a
when /^[a-z]*$/; print "Lower case\n"
when /^[A-Z]*$/; print "Upper case\n"
else; print "Mixed case\n"
end
produces:
Upper case
Match—Matches rxp against str.
/at/ =~ "input data" #=> 7
/ax/ =~ "input data" #=> nil
If =~ is used with a regexp literal with named captures, captured strings (or nil) is assigned to local variables named by the capture names.
/(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/ =~ " x = y "
p lhs #=> "x"
p rhs #=> "y"
If it is not matched, nil is assigned for the variables.
/(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/ =~ " x = "
p lhs #=> nil
p rhs #=> nil
This assignment is implemented in the Ruby parser. The parser detects ‘regexp-literal =~ expression’ for the assignment. The regexp must be a literal without interpolation and placed at left hand side.
The assignment does not occur if the regexp is not a literal.
re = /(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/
re =~ " x = y "
p lhs # undefined local variable
p rhs # undefined local variable
A regexp interpolation, #{}, also disables the assignment.
rhs_pat = /(?<rhs>\w+)/
/(?<lhs>\w+)\s*=\s*#{rhs_pat}/ =~ "x = y"
p lhs # undefined local variable
The assignment does not occur if the regexp is placed at the right hand side.
" x = y " =~ /(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/
p lhs, rhs # undefined local variable
Returns the value of the case-insensitive flag.
/a/.casefold? #=> false
/a/.casefold? #=> true
/(?i:a)/.casefold? #=> false
Returns the Encoding object that represents the encoding of obj.
Equality—Two regexps are equal if their patterns are identical, they have the same character set code, and their casefold? values are the same.
/abc/ == /abc/ #=> false
/abc/ == /abc/ #=> false
/abc/ == /abc/ #=> false
/abc/ == /abc/ #=> false
Returns false if rxp is applicable to a string with any ASCII compatible encoding. Returns true otherwise.
r = /a/
r.fixed_encoding? #=> false
r =~ "\u{6666} a" #=> 2
r =~ "\xa1\xa2 a".force_encoding("euc-jp") #=> 2
r =~ "abc".force_encoding("euc-jp") #=> 0 r = /a/
r.fixed_encoding? #=> true
r.encoding #=> #<Encoding:UTF-8>
r =~ "\u{6666} a" #=> 2
r =~ "\xa1\xa2".force_encoding("euc-jp") #=> ArgumentError
r =~ "abc".force_encoding("euc-jp") #=> 0 r = /\u{6666}/
r.fixed_encoding? #=> true
r.encoding #=> #<Encoding:UTF-8>
r =~ "\u{6666} a" #=> 0
r =~ "\xa1\xa2".force_encoding("euc-jp") #=> ArgumentError
r =~ "abc".force_encoding("euc-jp") #=> nil
Produce a hash based on the text and options of this regular expression.
Produce a nicely formatted string-version of rxp. Perhaps surprisingly, #inspect actually produces the more natural version of the string than #to_s.
/ab+c/x.inspect #=> "/ab+c/ix"
Returns a MatchData object describing the match, or nil if there was no match. This is equivalent to retrieving the value of the special variable $~ following a normal match. If the second parameter is present, it specifies the position in the string to begin the search.
/(.)(.)(.)/.match("abc")[2] #=> "b"
/(.)(.)/.match("abc", 1)[2] #=> "c"
If a block is given, invoke the block with MatchData if match succeed, so that you can write
pat.match(str) {|m| ...}
instead of
if m = pat.match(str)
...
end
The return value is a value from block execution in this case.
Returns a hash representing information about named captures of rxp.
A key of the hash is a name of the named captures. A value of the hash is an array which is list of indexes of corresponding named captures.
/(?<foo>.)(?<bar>.)/.named_captures
#=> {"foo"=>[1], "bar"=>[2]} /(?<foo>.)(?<foo>.)/.named_captures
#=> {"foo"=>[1, 2]}
If there are no named captures, an empty hash is returned.
/(.)(.)/.named_captures
#=> {}
Returns a list of names of captures as an array of strings.
/(?<foo>.)(?<bar>.)(?<baz>.)/.names
#=> ["foo", "bar", "baz"] /(?<foo>.)(?<foo>.)/.names
#=> ["foo"] /(.)(.)/.names
#=> []
Returns the set of bits corresponding to the options used when creating this Regexp (see Regexp::new for details. Note that additional bits may be set in the returned options: these are used internally by the regular expression code. These extra bits are ignored if the options are passed to Regexp::new.
Regexp::IGNORECASE #=> 1
Regexp::EXTENDED #=> 2
Regexp::MULTILINE #=> 4 /cat/.options #=> 0
/cat/x.options #=> 3
Regexp.new('cat', true).options #=> 1
/\xa1\xa2/.options #=> 16 r = /cat/x
Regexp.new(r.source, r.options) #=> /cat/ix
Returns the original string of the pattern.
/ab+c/x.source #=> "ab+c"
Note that escape sequences are retained as is.
/\x20\+/.source #=> "\\x20\\+"
Returns a string containing the regular expression and its options (using the (?opts:source) notation. This string can be fed back in to Regexp::new to a regular expression with the same semantics as the original. (However, Regexp#== may not return true when comparing the two, as the source of the regular expression itself may differ, as the example shows). Regexp#inspect produces a generally more readable version of rxp.
r1 = /ab+c/x #=> /ab+c/ix
s1 = r1.to_s #=> "(?ix-m:ab+c)"
r2 = Regexp.new(s1) #=> /(?ix-m:ab+c)/
r1 == r2 #=> false
r1.source #=> "ab+c"
r2.source #=> "(?ix-m:ab+c)"
Match—Matches rxp against the contents of $_. Equivalent to rxp =~ $_.
$_ = "input data"
~ /at/ #=> 7
ruby 正则表达式 ruby-doc原文的更多相关文章
- 雷林鹏分享:Ruby 正则表达式
Ruby 正则表达式 正则表达式是一种特殊序列的字符,它通过使用有专门语法的模式来匹配或查找其他字符串或字符串集合. 语法 正则表达式从字面上看是一种介于斜杠之间或介于跟在 %r 后的任意分隔符之间的 ...
- ruby 正则表达式Regexp
ruby正则表达式在线编辑器:rubular 一般规则: /a/匹配字符a. /\?/匹配特殊字符?.特殊字符包括^, $, ? , ., /, \, [, ], {, }, (, ), + ...
- ruby 正则表达式
Ruby学习笔记-正则表达式 Posted on 2011-11-29 17:55 Glen He 阅读(4998) 评论(0) 编辑 收藏 1.创建正则表达式 a) reg1 = /^[a-z]*$ ...
- 【ruby】ruby基础知识
Install Ruby(安装) For windows you can download Ruby from http://rubyforge.org/frs/?group_id=167 for L ...
- ruby 正则表达式 匹配中文
1.puts /[一-龥]+/.match("this is 中文") =>中文 2.str2="123中文"puts / ...
- ruby 正则表达式 匹配规则
- ruby 正则表达式 匹配所有符合规则的信息
假设一个字符串当中有很多符合规则的信息,下面的例子可以把所有匹配到的结果打印出来: message="afhadhffkdf414j9tr3j43i3433094jwoert223jwew1 ...
- [ruby]Windows Ruby安装步骤
Windows Ruby 安装步骤 准备工作: 1.http://rubyinstaller.org/downloads/ 下载选择Ruby 1.9.3 2.http://rubyinstaller. ...
- install ruby and ruby gem
sudo apt-get install ruby #find an folder and: git clone https://github.com/rubygems/rubygems.git cd ...
随机推荐
- HiHoCoder1671 : 反转子串([Offer收割]编程练习赛41)(占位)
描述 给定一个只包含括号和小写字母的字符串S,例如S="a(bc(de)fg)hijk". 其中括号表示将里面的字符串翻转.(注意括号可能嵌套) 请你输出翻转之后的字符串. 输入 ...
- jmeter的http post请求与测试Java请求
1.jmeter 测试Java请求 1.1 建立测试类,在被测程序中添加测试类 1.2 将测试程序打包,打成不可运行的包 1.3 将打好的包,放在$JMETER_HOME/lib/exts下面,把测试 ...
- MVC之一、预备知识储备
自动属性 隐式类型 对象初始化器与集合初始化器 匿名类 扩展方法 Lambda表达式 (1).自动属性(Auto-Implemented Properties) C#自动属性可以避免原来这样我们手工声 ...
- [解决问题]SSH连不上Ubuntu虚拟机解决办法
1. 安装openssh-client Ubuntu默认缺省安装了openssh-client,apt-get安装即可 sudo apt-get install openssh-client 2. 安 ...
- pow()函数的精度问题
妈蛋这个坑了我大半个小时都想不出个原因..后来看到pow的定义才想起,数据类型很重要啊.. 1.底数用常量,指数用整型 #include <stdio.h> #include <ma ...
- 转载TCP-IP协议解释
本文转载自 http://www.ruanyifeng.com/blog/2009/03/tcp-ip_model.html TCP/IP模型是互联网的基础, 理解 TCP/IP对理解互联网至关重要 ...
- 详解select()函数---
以后看 http://hi.baidu.com/bimufo/item/139700e4d880cba1c00d755c
- GitBook 入门学习
一.什么是 Gitbook GitBook 是一个基于 Node.js 的命令行工具,支持 Markdown 和 AsciiDoc 两种语法格式,可以输出 HTML.PDF.eBook 等格式的电子书 ...
- C++11之lambda表达式应用
应用 foreach语句中 #include <time.h> #include <algorithm> using namespace std; void func(int ...
- Fedora/CentOS使用技巧
命令 获取系统安装包的编译源码及脚本 # dnf download --source package # yumdownloader --source virt-viewer 远程连接windows ...