首先看这样做的特点,就是分到最后小块里的点合并上去的时候相对顺序不变,所以先加上块内逆序对的期望

合并的时候一定是一边卡住一个大值,另一边跳指针,所以把一个值向右直到有大于它的值位置的一段区间看作一段

当前合并两块合并到第i个和第j个,如果i和j都是块的开头就一定不会构成逆序对,因为双指针的时候会直接比较这两个点,其他情况有1/2的概率,所以成为一对逆序对的概率是\( \frac{i+j-2}{2(i+j)} \)

又因为最小快的长度最多两种,所以求前缀和然后枚举i直接求一排j的值即可

#include<iostream>
#include<cstdio>
#include<map>
using namespace std;
const int N=100005;
int n,k,mod,ans,inv[N],s[N];
map<int,int>c;
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=1ll*r*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return r;
}
void pre(int l,int r,int k)
{
if(k<=1||l==r)
{
c[r-l+1]++;
return;
}
int mid=(l+r)>>1;
pre(l,mid,k-1);
pre(mid+1,r,k-1);
}
int clc(int x,int y)
{
int r=1ll*x*y%mod;
for(int i=1;i<=x;i++)
r=(r-2ll*(s[i+y]-s[i])%mod)%mod;
return r;
}
int main()
{
scanf("%d%d%d",&n,&k,&mod);
for(int i=1;i<=1e5;i++)
inv[i]=ksm(i,mod-2),s[i]=(s[i-1]+inv[i])%mod;
pre(1,n,k);
for(map<int,int>::iterator i=c.begin();i!=c.end();i++)
{
ans=(ans+1ll*i->first*(i->first-1)%mod*inv[2]%mod*i->second%mod)%mod;
ans=(ans+1ll*i->second*(i->second-1)%mod*inv[2]%mod*clc(i->first,i->first)%mod)%mod;
}
for(map<int,int>::iterator i=c.begin();i!=c.end();i++)
for(map<int,int>::iterator j=c.begin();j!=c.end();j++)
if(i->first<j->first)
ans=(ans+1ll*clc(i->first,j->first)*i->second%mod*j->second%mod)%mod;
printf("%lld\n",(1ll*ans*inv[2]%mod+mod)%mod);
return 0;
}

codeforces1081G Mergesort Strikes Back【期望dp+脑洞】的更多相关文章

  1. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  2. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  3. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  4. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  5. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  6. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  7. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  8. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  9. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

随机推荐

  1. cocos2d-x中对象的位置,旋转,缩放

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/cuit/article/details/26729633 分为两种: 缓动.IntervalActi ...

  2. SlopeOne推荐算法

           Slope One 算法 是一种基于评分的预测算法, 本质上也是一种基于项目的算法.与一般的基于项目的算法不同, 该算法不计算项目之间的相似度, 而是用一种简单的线性回归模型进行预测(可 ...

  3. Excel图表转成图片

    关于excel 图表转成图片 知识点:excel 生成的图表不是图片 尝试.    通过Java调用POI接口挺难把excel生成的图表转成图片导出来 ps.      其它生成图表的工具,如jfre ...

  4. SQL语句编写注意问题

    下面就某些SQL语句的where子句编写中需要注意的问题作详细介绍.在这些where子句中,即使某些列存在索引,但是由于编写了劣质的SQL,系统在运行该SQL语句时也不能使用该索引,而同样使用全表扫描 ...

  5. 织梦CMS博客风格模板

    织梦CMS博客风格模板,织梦CMS,博客模板,CMS模板.程序模板. 模板地址:http://www.huiyi8.com/sc/7248.html

  6. Python: scikit-image canny 边缘检测

    这个用例说明canny 边缘检测的用法 import numpy as np import matplotlib.pyplot as plt from scipy import ndimage as ...

  7. 【Shell】变量的取用、删除、取代与替换

    ——来自<鸟哥的Linux私房菜> ——总结做方便查阅之用 变量的取用: echo echo $variableecho $PATHecho ${PATH} 变量的配置守则1.变量与变量内 ...

  8. ACM学习历程—HDU5418 Victor and World(动态规划 && 状压)

    这个题目由于只有16个城市,很容易想到去用状压来保存状态. p[i][state]表示到i城市经过state状态的城市的最优值(state的二进制位每一位为1表示经过了该城市,否则没经过) 这样p[j ...

  9. ACM学习历程—HDU 5326 Work(树形递推)

    Problem Description It’s an interesting experience to move from ICPC to work, end my college life an ...

  10. ACM学习历程——POJ 2376 Cleaning Shifts(贪心)

    Description Farmer John is assigning some of his N (1 <= N <= 25,000) cows to do some cleaning ...