首先看这样做的特点,就是分到最后小块里的点合并上去的时候相对顺序不变,所以先加上块内逆序对的期望

合并的时候一定是一边卡住一个大值,另一边跳指针,所以把一个值向右直到有大于它的值位置的一段区间看作一段

当前合并两块合并到第i个和第j个,如果i和j都是块的开头就一定不会构成逆序对,因为双指针的时候会直接比较这两个点,其他情况有1/2的概率,所以成为一对逆序对的概率是\( \frac{i+j-2}{2(i+j)} \)

又因为最小快的长度最多两种,所以求前缀和然后枚举i直接求一排j的值即可

#include<iostream>
#include<cstdio>
#include<map>
using namespace std;
const int N=100005;
int n,k,mod,ans,inv[N],s[N];
map<int,int>c;
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=1ll*r*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return r;
}
void pre(int l,int r,int k)
{
if(k<=1||l==r)
{
c[r-l+1]++;
return;
}
int mid=(l+r)>>1;
pre(l,mid,k-1);
pre(mid+1,r,k-1);
}
int clc(int x,int y)
{
int r=1ll*x*y%mod;
for(int i=1;i<=x;i++)
r=(r-2ll*(s[i+y]-s[i])%mod)%mod;
return r;
}
int main()
{
scanf("%d%d%d",&n,&k,&mod);
for(int i=1;i<=1e5;i++)
inv[i]=ksm(i,mod-2),s[i]=(s[i-1]+inv[i])%mod;
pre(1,n,k);
for(map<int,int>::iterator i=c.begin();i!=c.end();i++)
{
ans=(ans+1ll*i->first*(i->first-1)%mod*inv[2]%mod*i->second%mod)%mod;
ans=(ans+1ll*i->second*(i->second-1)%mod*inv[2]%mod*clc(i->first,i->first)%mod)%mod;
}
for(map<int,int>::iterator i=c.begin();i!=c.end();i++)
for(map<int,int>::iterator j=c.begin();j!=c.end();j++)
if(i->first<j->first)
ans=(ans+1ll*clc(i->first,j->first)*i->second%mod*j->second%mod)%mod;
printf("%lld\n",(1ll*ans*inv[2]%mod+mod)%mod);
return 0;
}

codeforces1081G Mergesort Strikes Back【期望dp+脑洞】的更多相关文章

  1. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  2. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  3. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  4. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  5. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  6. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  7. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  8. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  9. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

随机推荐

  1. API的理解和使用——字符串的命令

    字符串的命令复习表 命令 作用 set   setex   setnx   get   mset   mget   incr   decs   incrby   decrby   incrbyfloa ...

  2. Java for LeetCode 115 Distinct Subsequences【HARD】

    Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence ...

  3. /etc/init.d/nginx

    #! /bin/sh PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin DESC="nginx daemon ...

  4. Hadoop- 集群时间同步

    集群的时间要同步 * 找一台机器 时间服务器 * 所有的机器与这台机器时间进行定时的同步 比如,每日十分钟,同步一次时间 # rpm -qa|grep ntp # vi /etc/ntp.conf # ...

  5. Hadoop- MapReduce在实际应用中常见的调优

    1.Reduce Task Number 通常来说一个block就对应一个map任务进行处理,reduce任务如果人工不去设置干预的话就一个reduce.reduce任务的个数可以通过在程序中设置   ...

  6. js面向(基于)对象编程-三大特征

    ①抽象 js提供以下几种控制方法和属性的访问权限: (1)公开级别:对外公开 (2)私有级别:类本身可以访问,不对外公开 案例如下所示: function Person(name,age,sal){ ...

  7. 语义分割(semantic segmentation) 常用神经网络介绍对比-FCN SegNet U-net DeconvNet,语义分割,简单来说就是给定一张图片,对图片中的每一个像素点进行分类;目标检测只有两类,目标和非目标,就是在一张图片中找到并用box标注出所有的目标.

    from:https://blog.csdn.net/u012931582/article/details/70314859 2017年04月21日 14:54:10 阅读数:4369 前言 在这里, ...

  8. listen 56

    Kettles Stop Whistling in the Dark British physicist Lord Rayleigh is best known for his discovery o ...

  9. linux命令学习:echo详解,格式化输出,不换行输出

    shell脚本不换行刷新数据 #!/bin/bash ] do a=$(ifconfig eth0 | grep 'RX pac' | awk '{print $2}' | awk -F: '{pri ...

  10. visual studio code使用MSVC编译C++

    环境 OS::Microsoft Windows [Version 10.0.17134.285] x64 VSC:Version:1.27.2 (system setup) VS:2017 心血来潮 ...