Necklace

Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 4003    Accepted Submission(s): 1330

Problem Description
Mery has a beautiful necklace. The necklace is made up of N magic balls. Each ball has a beautiful value. The balls with the same beautiful value look the same, so if two or more balls have the same beautiful value, we just count it once. We define the beautiful
value of some interval [x,y] as F(x,y). F(x,y) is calculated as the sum of the beautiful value from the xth ball to the yth ball and the same value is ONLY COUNTED ONCE. For example, if the necklace is 1 1 1 2 3 1, we have F(1,3)=1, F(2,4)=3, F(2,6)=6.



Now Mery thinks the necklace is too long. She plans to take some continuous part of the necklace to build a new one. She wants to know each of the beautiful value of M continuous parts of the necklace. She will give you M intervals [L,R] (1<=L<=R<=N) and you
must tell her F(L,R) of them.
 
Input
The first line is T(T<=10), representing the number of test cases.

  For each case, the first line is a number N,1 <=N <=50000, indicating the number of the magic balls. The second line contains N non-negative integer numbers not greater 1000000, representing the beautiful value of the N balls. The third line has a number
M, 1 <=M <=200000, meaning the nunber of the queries. Each of the next M lines contains L and R, the query.
 
Output
For each query, output a line contains an integer number, representing the result of the query.
 
Sample Input
2
6
1 2 3 4 3 5
3
1 2
3 5
2 6
6
1 1 1 2 3 5
3
1 1
2 4
3 5
 
Sample Output
3
7
14
1
3
6
对于这道题。大家能够看我博客里http://blog.csdn.net/qq_18661257/article/details/47419441提供的离线处理教程后,基本能够理解离线处理的机制了,然后我们就要对比理解题目。不能出现反复的数字,所以能够离线最右边的值,将前面的值一一删除就能够得到正确答案,当然,大家还需注意的是数值取值范围为long long ,我就是在这个上面看了接近一个小时,query()函数的返回值应该也是long long 。坑爹的地方就是这里了,其它的,大家看代码基本能够秒懂的

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long LL;
#define lson rt << 1, l, mid
#define rson rt << 1|1, mid + 1, r
#define root 1, 1, N
const int MAXN = 5e4 + 5;
const int MAXM = 2e5 + 5;
const int MAXS = 1e6 + 5;
int N, M, T, pre[MAXS];
LL Ans[MAXM],Sum[MAXN << 2]; struct node {
int l, r, id;
bool operator < (const node & object) const {
return r < object.r;
}
} Node[MAXM]; void pushup(int rt) {
Sum[rt] = Sum[rt << 1] + Sum[rt << 1|1];
} void build(int rt,int l,int r) {
if(l == r) {
scanf("%I64d", &Sum[rt]);
return;
}
int mid = (l + r) >> 1;
build(lson);
build(rson);
pushup(rt);
} void update(int p,int rt, int l, int r) {
if(l == r) {
Sum[rt] = 0;
return;
}
int mid = (l + r) >> 1;
if(p <= mid) update(p, lson);
else update(p, rson);
pushup(rt);
} LL query(int L, int R, int rt, int l, int r) {
if(L <= l && r <= R) {
return Sum[rt];
}
int mid = (l + r) >> 1;
LL ret = 0;
if(L <= mid) ret += query(L, R, lson);
if(R > mid) ret += query(L, R, rson);
return ret;
} int main() {
//freopen("D://imput.txt","r",stdin);
scanf("%d", &T);
while(T --) {
scanf("%d", &N);
build(root);
scanf("%d", &M);
for(int i = 1 ; i <= M ; i ++) {
scanf("%d %d", &Node[i].l, &Node[i].r);
Node[i].id = i;
}
memset(pre, -1, sizeof(pre));
sort(Node + 1, Node + M + 1);
for(int i = 1,j = 1; i <= N; i++) {
int tmp = query(i, i, root);
if(tmp != 0 && pre[tmp] != -1) {//假设前面存在反复的数字则删除他
update(pre[tmp],root);
}
pre[tmp] = i;
while(j <= M && Node[j].r == i) {//假设右边的值等于当前的值,则进行求和,大家能够參考我博客里的教程
Ans[Node[j].id] = query(Node[j].l, Node[j].r, root);
j ++;
}
}
for(int i = 1; i <= M ; i ++) {
printf("%I64d\n", Ans[i]);
}
}
return 0;
}


 

HDU - 3874 Necklace (线段树 + 离线处理)的更多相关文章

  1. Necklace HDU - 3874 (线段树/树状数组 + 离线处理)

    Necklace HDU - 3874  Mery has a beautiful necklace. The necklace is made up of N magic balls. Each b ...

  2. HDU 3874 Necklace (树状数组 | 线段树 的离线处理)

    Necklace Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total S ...

  3. HDU 4638-Group(线段树+离线处理)

    题意: 给n个编号,m个查询每个查询l,r,求下标区间[l,r]中能分成标号连续的组数(一组内的标号是连续的) 分析: 我们认为初始,每个标号为一个组(线段树维护区间组数),从左向右扫序列,当前标号, ...

  4. HDU 4417 【线段树+离线处理】

    http://acm.hdu.edu.cn/showproblem.php?pid=4417 题意:找出给定区间内,有多少个数小于等于给定的数.用线段树维护的话会超时,要用到线段树的离线操作,对询问与 ...

  5. hdu 4288 Coder (线段树+离线)

    题意: 刚开始有一个空集合.有三种操作: 1.往集合中加入一个集合中不存在的数 x 2.从集合中删除一个已经存在的数 x 3.计算集合的digest sum并输出.       digest sum求 ...

  6. HDU-3874 Necklace 线段树+离线

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3874 比较简单的题,题意也好懂. 先O(n)求每个数左边第一次出现的与他相同的数的位置l[i].对询问 ...

  7. hdu 3874 Necklace(bit树+事先对查询区间右端点排序)

    Mery has a beautiful necklace. The necklace is made up of N magic balls. Each ball has a beautiful v ...

  8. HDU 3874 离线段树

    在所有数字的统计范围,,对于重复统计只有一次 离线段树算法 排序终点坐标.然后再扫,反复交锋.把之前插入树行被删除 #include "stdio.h" #include &quo ...

  9. HDU3874 线段树 + 离线处理

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3874 , 线段树(或树状数组) + 离线处理 下午做了第一道离线处理的题目(HDU4417),多少有点 ...

随机推荐

  1. 人类基因(human)

    题目描述 上了大学之后,小W和小Z一起报了一门三宝课,在实践课上遇到了一些问题. 一条染色体上有nn对基因,每种基因都可以用一个数ai来表示,作为标号. 现在,在其中一条染色单体上某基因发生了突变. ...

  2. SPOJ QTREE Query on a tree VI

    You are given a tree (an acyclic undirected connected graph) with n nodes. The tree nodes are number ...

  3. CentOS下VNC使用

    1. 介绍 本文主要介绍了VNC Server的配置和使用 2. 安装 CentOS中默认就有安装VNC,可以通过命令rpm查看 [Jerry@localhost ~]$ rpm -qa | grep ...

  4. 移动电子商务:五个技术标准与Trustonic TEE解决方案【转】

    转自:http://www.vonwei.com/post/mobileTrustonicTEE.html 转载申明:本站原创,欢迎转载.但转载时请保留原文地址.原文地址:http://www.von ...

  5. systemd 开机无法启动privoxy

    此博客不在更新,我的博客新地址:www.liuquanhao.com ----------------------------------------------------------------- ...

  6. hdu 1005(找循环节)

    Number Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  7. LeetCode OJ-- First Missing Positive

    https://oj.leetcode.com/problems/first-missing-positive/ 给一列数,找出缺失的第一个正数.要求时间复杂度 O(n) 第一步遍历一遍,找出最大的数 ...

  8. 构建更好的HashMap

    在7月份的那期 Java理论与实践(“并发集合类”)中,我们简单地回顾了可伸缩性的瓶颈,并讨论了怎么用共享数据结构的方法获得更高的并发性和吞吐量.有时候学习的最好方法是分析专家的成果,所以这个月我们将 ...

  9. Java Hibernate事务并发控制

    在产品上线时发现当用户数量大并发性能差,经常发现数据库死锁,经诊断,是由于设置了不正确的事务隔离,可以做如下优级化(这里我们使用JTA事务): JTA具有的3个接口:UserTransaction接口 ...

  10. [UR #3] 核聚变反应强度

    次大公约数就是gcd再除以其最小质因子(如果有的话).可以发现要求的sgcd 的前身gcd都是a1的约数,所以把a1质因数分解直接做就行了. #include<bits/stdc++.h> ...