来自:http://my.oschina.net/scipio/blog/284957#OSC_h5_11

目录[-]

1、准备文件

wget http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/spam.data

2、加载文件

scala> val inFile = sc.textFile("/home/scipio/spam.data")

输出

14/06/28 12:15:34 INFO MemoryStore: ensureFreeSpace(32880) called with curMem=65736, maxMem=311387750
14/06/28 12:15:34 INFO MemoryStore: Block broadcast_2 stored as values to memory (estimated size 32.1 KB, free 296.9 MB)
inFile: org.apache.spark.rdd.RDD[String] = MappedRDD[7] at textFile at <console>:12

3、显示一行

scala> inFile.first()

输出

14/06/28 12:15:39 INFO FileInputFormat: Total input paths to process : 1
14/06/28 12:15:39 INFO SparkContext: Starting job: first at <console>:15
14/06/28 12:15:39 INFO DAGScheduler: Got job 0 (first at <console>:15) with 1 output partitions (allowLocal=true)
14/06/28 12:15:39 INFO DAGScheduler: Final stage: Stage 0(first at <console>:15)
14/06/28 12:15:39 INFO DAGScheduler: Parents of final stage: List()
14/06/28 12:15:39 INFO DAGScheduler: Missing parents: List()
14/06/28 12:15:39 INFO DAGScheduler: Computing the requested partition locally
14/06/28 12:15:39 INFO HadoopRDD: Input split: file:/home/scipio/spam.data:0+349170
14/06/28 12:15:39 INFO SparkContext: Job finished: first at <console>:15, took 0.532360118 s
res2: String = 0 0.64 0.64 0 0.32 0 0 0 0 0 0 0.64 0 0 0 0.32 0 1.29 1.93 0 0.96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.778 0 0 3.756 61 278 1

4、函数运用

(1)map
scala> val nums = inFile.map(x=>x.split(' ').map(_.toDouble))
nums: org.apache.spark.rdd.RDD[Array[Double]] = MappedRDD[8] at map at <console>:14 scala> nums.first()
14/06/28 12:19:07 INFO SparkContext: Starting job: first at <console>:17
14/06/28 12:19:07 INFO DAGScheduler: Got job 1 (first at <console>:17) with 1 output partitions (allowLocal=true)
14/06/28 12:19:07 INFO DAGScheduler: Final stage: Stage 1(first at <console>:17)
14/06/28 12:19:07 INFO DAGScheduler: Parents of final stage: List()
14/06/28 12:19:07 INFO DAGScheduler: Missing parents: List()
14/06/28 12:19:07 INFO DAGScheduler: Computing the requested partition locally
14/06/28 12:19:07 INFO HadoopRDD: Input split: file:/home/scipio/spam.data:0+349170
14/06/28 12:19:07 INFO SparkContext: Job finished: first at <console>:17, took 0.011412903 s
res3: Array[Double] = Array(0.0, 0.64, 0.64, 0.0, 0.32, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.64, 0.0, 0.0, 0.0, 0.32, 0.0, 1.29, 1.93, 0.0, 0.96, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.778, 0.0, 0.0, 3.756, 61.0, 278.0, 1.0)
(2)collecct
scala> val rdd = sc.parallelize(List(1,2,3,4,5))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[9] at parallelize at <console>:12 scala> val mapRdd = rdd.map(2*_)
mapRdd: org.apache.spark.rdd.RDD[Int] = MappedRDD[10] at map at <console>:14 scala> mapRdd.collect
14/06/28 12:24:45 INFO SparkContext: Job finished: collect at <console>:17, took 1.789249751 s
res4: Array[Int] = Array(2, 4, 6, 8, 10)
(3)filter
scala> val filterRdd = sc.parallelize(List(1,2,3,4,5)).map(_*2).filter(_>5)
filterRdd: org.apache.spark.rdd.RDD[Int] = FilteredRDD[13] at filter at <console>:12 scala> filterRdd.collect
14/06/28 12:27:45 INFO SparkContext: Job finished: collect at <console>:15, took 0.056086178 s
res5: Array[Int] = Array(6, 8, 10)
(4)flatMap
scala> val rdd = sc.textFile("/home/scipio/README.md")
14/06/28 12:31:55 INFO MemoryStore: ensureFreeSpace(32880) called with curMem=98616, maxMem=311387750
14/06/28 12:31:55 INFO MemoryStore: Block broadcast_3 stored as values to memory (estimated size 32.1 KB, free 296.8 MB)
rdd: org.apache.spark.rdd.RDD[String] = MappedRDD[15] at textFile at <console>:12 scala> rdd.count
14/06/28 12:32:50 INFO SparkContext: Job finished: count at <console>:15, took 0.341167662 s
res6: Long = 127 scala> rdd.cache
res7: rdd.type = MappedRDD[15] at textFile at <console>:12 scala> rdd.count
14/06/28 12:33:00 INFO SparkContext: Job finished: count at <console>:15, took 0.32015745 s
res8: Long = 127 scala> val wordCount = rdd.flatMap(_.split(' ')).map(x=>(x,1)).reduceByKey(_+_)
wordCount: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[20] at reduceByKey at <console>:14 scala> wordCount.collect res9: Array[(String, Int)] = Array((means,1), (under,2), (this,4), (Because,1), (Python,2), (agree,1), (cluster.,1), (its,1), (YARN,,3), (have,2), (pre-built,1), (MRv1,,1), (locally.,1), (locally,2), (changed,1), (several,1), (only,1), (sc.parallelize(1,1), (This,2), (basic,1), (first,1), (requests,1), (documentation,1), (Configuration,1), (MapReduce,2), (without,1), (setting,1), ("yarn-client",1), ([params]`.,1), (any,2), (application,1), (prefer,1), (SparkPi,2), (<http://spark.apache.org/>,1), (version,3), (file,1), (documentation,,1), (test,1), (MASTER,1), (entry,1), (example,3), (are,2), (systems.,1), (params,1), (scala>,1), (<artifactId>hadoop-client</artifactId>,1), (refer,1), (configure,1), (Interactive,2), (artifact,1), (can,7), (file's,1), (build,3), (when,2), (2.0.X,,1), (Apac... scala> wordCount.saveAsTextFile("/home/scipio/wordCountResult.txt")
(5)union
scala> val rdd = sc.parallelize(List(('a',1),('a',2)))
rdd: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[10] at parallelize at <console>:12 scala> val rdd2 = sc.parallelize(List(('b',1),('b',2)))
rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[11] at parallelize at <console>:12 scala> rdd union rdd2
res3: org.apache.spark.rdd.RDD[(Char, Int)] = UnionRDD[12] at union at <console>:17 scala> res3.collect res4: Array[(Char, Int)] = Array((a,1), (a,2), (b,1), (b,2))
(6) join
scala> val rdd1 = sc.parallelize(List(('a',1),('a',2),('b',3),('b',4)))
rdd1: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[10] at parallelize at <console>:12 scala> val rdd2 = sc.parallelize(List(('a',5),('a',6),('b',7),('b',8)))
rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[11] at parallelize at <console>:12 scala> rdd1 join rdd2
res1: org.apache.spark.rdd.RDD[(Char, (Int, Int))] = FlatMappedValuesRDD[14] at join at <console>:17 res1.collect res2: Array[(Char, (Int, Int))] = Array((b,(3,7)), (b,(3,8)), (b,(4,7)), (b,(4,8)), (a,(1,5)), (a,(1,6)), (a,(2,5)), (a,(2,6)))
(7)lookup
val rdd1 = sc.parallelize(List(('a',1),('a',2),('b',3),('b',4)))
rdd1.lookup('a')
res3: Seq[Int] = WrappedArray(1, 2)
(8)groupByKey
val wc = sc.textFile("/home/scipio/README.md").flatMap(_.split(' ')).map((_,1)).groupByKey
wc.collect 14/06/28 12:56:14 INFO SparkContext: Job finished: collect at <console>:15, took 2.933392093 s
res0: Array[(String, Iterable[Int])] = Array((means,ArrayBuffer(1)), (under,ArrayBuffer(1, 1)), (this,ArrayBuffer(1, 1, 1, 1)), (Because,ArrayBuffer(1)), (Python,ArrayBuffer(1, 1)), (agree,ArrayBuffer(1)), (cluster.,ArrayBuffer(1)), (its,ArrayBuffer(1)), (YARN,,ArrayBuffer(1, 1, 1)), (have,ArrayBuffer(1, 1)), (pre-built,ArrayBuffer(1)), (MRv1,,ArrayBuffer(1)), (locally.,ArrayBuffer(1)), (locally,ArrayBuffer(1, 1)), (changed,ArrayBuffer(1)), (sc.parallelize(1,ArrayBuffer(1)), (only,ArrayBuffer(1)), (several,ArrayBuffer(1)), (This,ArrayBuffer(1, 1)), (basic,ArrayBuffer(1)), (first,ArrayBuffer(1)), (documentation,ArrayBuffer(1)), (Configuration,ArrayBuffer(1)), (MapReduce,ArrayBuffer(1, 1)), (requests,ArrayBuffer(1)), (without,ArrayBuffer(1)), ("yarn-client",ArrayBuffer(1)), ([params]`.,Ar...
(9)sortByKey
val rdd = sc.textFile("/home/scipio/README.md")
val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_)
val wcsort = wordcount.map(x => (x._2,x._1)).sortByKey(false).map(x => (x._2,x._1))
wcsort.saveAsTextFile("/home/scipio/sort.txt")

升序的话,sortByKey(true)

Sprak RDD简单应用的更多相关文章

  1. rdd简单操作

    1.原始数据 Key value Transformations(example: ((1, 2), (3, 4), (3, 6)))  2. flatMap测试示例 object FlatMapTr ...

  2. RDD算子的使用

    TransformationDemo.scala import org.apache.spark.{HashPartitioner, SparkConf, SparkContext} import s ...

  3. JAVA RDD 介绍

    RDD 介绍 RDD,全称Resilient Distributed Datasets(弹性分布式数据集),是Spark最为核心的概念,是Spark对数据的抽象. RDD是分布式的元素集合,每个RDD ...

  4. Spark简述及基本架构

    Spark简述 Spark发源于美国加州大学伯克利分校AMPLab的集群计算平台.它立足 于内存计算.从多迭代批量处理出发,兼收并蓄数据仓库.流处理和图计算等多种计算范式. 特点: 1.轻 Spark ...

  5. Job 逻辑执行图

    General logical plan 典型的 Job 逻辑执行图如上所示,经过下面四个步骤可以得到最终执行结果: 从数据源(可以是本地 file,内存数据结构, HDFS,HBase 等)读取数据 ...

  6. Spark学习之JavaRdd

    RDD 介绍 RDD,全称Resilient Distributed Datasets(弹性分布式数据集),是Spark最为核心的概念,是Spark对数据的抽象.RDD是分布式的元素集合,每个RDD只 ...

  7. 【Spark深入学习 -10】基于spark构建企业级流处理系统

    ----本节内容------- 1.流式处理系统背景 1.1 技术背景 1.2 Spark技术很火 2.流式处理技术介绍 2.1流式处理技术概念 2.2流式处理应用场景 2.3流式处理系统分类 3.流 ...

  8. Spark学习之路 (六)Spark Transformation和Action

    Transformation算子 基本的初始化 java static SparkConf conf = null; static JavaSparkContext sc = null; static ...

  9. <Spark><Programming><RDDs>

    Introduction to Core Spark Concepts driver program: 在集群上启动一系列的并行操作 包含应用的main函数,定义集群上的分布式数据集,操作数据集 通过 ...

随机推荐

  1. python PEP8代码规范及问题

    最近刚刚接触Python,为了养成好习惯,尽量保证自己写的代码符合PEP8代码规范,下面是过程中报出的警告及解决方法,英文有些翻译不太准确见谅,会不断更新: PEP 8: module level i ...

  2. python数据模型(特殊方法)

    python中的全部特殊方法 本部分内容可以参考官方网址 python中一共有83个特殊方法,其中47个用于算术运算.位运算和比较操作.我根据<流畅的python>中的整理,摘录如下两个表 ...

  3. Android 简历+面试题 汇总

    1.教你写简历 1.1.你真的会写简历吗? 1.2.80%以上简历都是不合格的 1.3.推荐两个技术简历模板 1.4.关于程序员求职简历 1.5.程序员简历模板列表 2.面试题 2.1.国内一线互联网 ...

  4. Django基于Pycharm开发之三[LANGUAGE_CODE与TIME_ZONE]

    在django/conf/global_settings.py 中,我们可以找到关于language和timezone的通用配置信息,源码如下: # Local time zone for this ...

  5. 03018_监听器Listener

    1.什么是监听器? (1)监听器就是监听某个对象的状态变化的组件: (2)监听器的相关概念 ①事件源:被监听的对象------三个域对象:request.session.ServletContext ...

  6. java对象转json格式

    package com; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import jav ...

  7. Django之session验证的三种姿势

    一.什么是session session是保存在服务端的键值对,Django默认支持Session,并且默认是将Session数据存储在数据库中,即:django_session 表中. 二.FVB中 ...

  8. IOS开发---菜鸟学习之路--(二十三)-直接利用键值对的方式来处理数据的感想

    首先声明,本文纯粹只是做为本人个人新手的理解.文中的想法我知道肯定有很多地方是错的. 但是这就是我作为一个新人的使用方法,对于大牛非常欢迎指导,对于喷子请绕道而行. 由于这是早上跟我学长讨论数据处理时 ...

  9. 更改 Mac 上的功能键行为

    您可以将 Apple 键盘上的顶行按键用作标准功能键,或用来控制 Mac 的内建功能.   如果您的 Apple 键盘部分顶行按键上印有图标,则这些按键可用于执行每个图标所示的特殊功能.这些按键也可用 ...

  10. Java 语言概述与开发环境(1)

    目录: 一.计算机语言的发展史 二.Java语言的简述 三.Java的特点 四.java语言的运行环境及环境变量的配置 五.Dos的常见命令 六.第一个java程序-HelloWord        ...