题目大意:
  给定$n(n\leq10^{11})$,求$\pi(n)$。

思路:
  计算$\pi$函数有$O(n^{\frac23})$的Lehmer算法,这里考虑$O(\frac{n^{\frac34}}{\ln n})$的洲阁筛。
  我们可以将答案分为$\leq\sqrt n$的质数个数和$>\sqrt n$的质数个数。
  其中$\leq\sqrt n$的质数个数可以线性筛预处理,而$>\sqrt n$的质数个数相当于用$\leq\sqrt n$的质数筛这$n$个数后剩下的数的个数。
  若用$f[i][j]$表示$1\sim j$中与前$i$个数互质的数的个数,则转移方程为$f[i][j]=f[i-1][j]-f[i-1][\lfloor\frac j{p_i}\rfloor]$。$\pi(n)\sim\frac n{\ln n}$,$j$有$\sqrt n$种取值,时间复杂度$O\left(\frac n{\ln\sqrt n}\right)=O\left(\frac n{\ln n}\right)$。
  当$p_{i+1}>j$时,$f[i][j]=1$。所以当$p_i>\frac j{p_i}$时,转移方程变为$f[i][j]=f[i-1][j]-1$。
  因此对于每一个$j$,只需计算$p_i^2\leq j$的$f[i][j]$即可。对于$p_i^2>j$的$j$,可以记录最后一步的$i$是多少,转移的时候把那些$1$一起减掉。答案就是一开始线性筛求出的$\leq\sqrt n$的质数个数+用$\leq\sqrt n$筛完剩下的数。注意筛完除了那些$>\sqrt n$的质数,还会剩下$1$,因此最后要把$1$去掉。
  时间复杂度$O\left(\frac{n^\frac34}{\ln n}\right)$。

 #include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
typedef long long int64;
inline int64 getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int64 x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int LIM=,P=;
bool vis[LIM];
int lim,p[P],sum[LIM],last[LIM*],cnt;
int64 val[LIM*],f[LIM*];
inline void sieve() {
for(register int i=;i<=lim;i++) {
if(!vis[i]) p[++p[]]=i;
sum[i]=sum[i-]+!vis[i];
for(register int j=;j<=p[]&&i*p[j]<=lim;j++) {
vis[i*p[j]]=true;
if(i%p[j]==) break;
}
}
}
int main() {
const int64 n=getint();
lim=sqrt(n);
sieve();
for(register int64 i=;i<=n;i=n/(n/i)+) {
val[++cnt]=n/i;
}
std::reverse(&val[],&val[cnt]+);
std::copy(&val[],&val[cnt]+,&f[]);
for(register int i=;i<=p[];i++) {
for(register int j=cnt;j;j--) {
const int64 k=val[j]/p[i],pos=k<=lim?k:cnt+-n/k;
if(k<p[i]) break;
f[j]-=f[pos]+last[pos]-i+;
last[j]=i;
}
}
printf("%lld\n",sum[lim]+f[cnt]-);
return ;
}

[LOJ6235]区间素数个数的更多相关文章

  1. LOJ6235 区间素数个数(min_25筛)

    题目链接:LOJ 题目大意:看到题目名字应该都知道是啥了吧. $1\le N\le 10^{11}$. 阉割版 min_25 筛.发现答案实际上就是 min_25 筛中 $g(N,pl)$ 的值.(取 ...

  2. loj #6235. 区间素数个数

    #6235. 区间素数个数 题目描述 求 1∼n 1\sim n1∼n 之间素数个数. 输入格式 一行一个数 n nn . 输出格式 一行一个数,表示答案. 样例 样例输入 10 样例输出 4 样例解 ...

  3. LightOj 1197 - Help Hanzo(分段筛选法 求区间素数个数)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1197 题意:给你两个数 a b,求区间 [a, b]内素数的个数, a and b ( ...

  4. LOJ.6235.区间素数个数(Min_25筛)

    题目链接 \(Description\) 给定\(n\),求\(1\sim n\)中的素数个数. \(2\leq n\leq10^{11}\). \(Solution\) Min_25筛.只需要求出\ ...

  5. loj #6235. 区间素数个数 min_12.5筛

    \(\color{#0066ff}{ 题目描述 }\) 求 \(1\sim n\) 之间素数个数. \(\color{#0066ff}{输入格式}\) 一行一个数 n . \(\color{#0066 ...

  6. loj#6235. 区间素数个数(min25筛)

    题意 题目链接 Sol min25筛的板子题,直接筛出\(g(N, \infty)\)即可 筛的时候有很多trick,比如只存\(\frac{N}{x}\)的值,第二维可以滚动数组滚动掉 #inclu ...

  7. Prime Count 求大区间素数个数

    http://acm.gdufe.edu.cn/Problem/read/id/1333 https://www.zhihu.com/question/29580448/answer/44874605

  8. poj 2689Prime Distance(区间素数)埃氏筛法

    这道题的L和R都很大,所以如果直接开一个1~R的数组明显会超时.但是R-L并不大,所以我们考虑把这个区间(L--R)移动到(1--(R-L+1))这个区间再开数组(就是把每个数减L再加1).接下来先用 ...

  9. UVA-10200-Prime Time-判断素数个数(打表预处理)+精度控制

    题意: 给出a.b区间,判断区间内素数所占百分比 思路: 注意提前打表和控制精度1e-8的范围足够用了 细节: 精度的处理 判断素数的方法(且返回值为bool) 数据类型的强制转换 保存素数个数 提前 ...

随机推荐

  1. opencv使用日记之一:平台搭建Mat类以及图像的读取修改

    平台搭建就摸了一整天时间,真的是...不说了,最后我选择的是 opencv3.0(2015/06/04)  + win7 + vs2012   注意opencv的版本不同导入的库文件是不一样的,所以请 ...

  2. 8 django 里面的API

    1.什么是API? 2.在djang里面写API 3.API实战效果 1.移动端的网页 4.restframework :老师方法 (0)安装 Django REST framework 是一个强大且 ...

  3. P2920 [USACO08NOV]时间管理Time Management

    P2920 [USACO08NOV]时间管理Time Management 题目描述 Ever the maturing businessman, Farmer John realizes that ...

  4. 小米r3g旧版开发版固件,安装opkg

    1.开启ssh 1.1.刷入固件 在路由器更新界面,刷入 miwifi_r3g_firmware_c2175_2.25.122.bin 固件 下载地址: http://bigota.miwifi.co ...

  5. TypeError: cannot perform reduce with flexible type

    想要解决这个错误,最好先明白numpy数据类型的dtype转换 生成一个浮点数组 a=np.random.random(4) 输出 a array([0.0945377,0.52199916,0.62 ...

  6. C语言编程题002

    给出两个整数,L和R,其中L<=A<=B<=R,然后求出A^B值最大的数.其中1<=L<=R<=1000. 比如说L = 1;R = 3; L 0001 R 001 ...

  7. windows下使用grunt

    grunt官网:http://www.gruntjs.org/ 一.安装grunt 先安装node,在http://www.nodejs.org/可以下载安装包直接安装.在命令行下运行: npm in ...

  8. BugKu-妹子的陌陌

    打开后看这张图片,先放winhex里面,文件头FFD8,是jpg图片.看文件尾并不是FFD9,所以binwalk分析一下. 发现有一个rar文件,然后用foremost分离.发现里面有个加密的rar文 ...

  9. 计算几何-凸包-toleft test

    toLeftTest toLeftTest是判断一个点是否在有向直线左侧的算法. 当点s位于向量pq左侧时,toLeftTest返回true.当点s位于向量pq右侧时,toLeftTest返回fals ...

  10. mysql错误之2014

    error:2014 Commands out of sync; you can't run this command now 这个错误号我也真是醉了. 一直纠结于为什么存储过程执行完,commit操 ...