https://www.luogu.org/problemnew/show/P2257

求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数

求 $\sum\limits_p \sum\limits_{i=1}{n}\sum\limits_{j=1}{m}[gcd(i,j)==p] $

由套路:

\(=\sum\limits_p \sum\limits_{k=1}^{N}\mu(k) \lfloor\frac{n}{kp}\rfloor \lfloor\frac{m}{kp}\rfloor\)

再套路:

\(=\sum\limits_p \sum\limits_{T=kp}^{N}\mu(\frac{T}{p}) \lfloor\frac{n}{T}\rfloor \lfloor\frac{m}{T}\rfloor\)

交换求和:

\(=\sum\limits_{T=1}^{N} \sum\limits_{p|T} \mu(\frac{T}{p}) \lfloor\frac{n}{T}\rfloor \lfloor\frac{m}{T}\rfloor\)

提T:

\(=\sum\limits_{T=1}^{N} \lfloor\frac{n}{T}\rfloor \lfloor\frac{m}{T}\rfloor \sum\limits_{p|T} \mu(\frac{T}{p})\)

后面的式子可以预处理,方法是在筛出质数表和莫比乌斯函数表之后,枚举每个质数p,再枚举倍数k,给kp加上 \(\mu(k)\) .

前面的式子可以整除分块 \(r=min(n/(n/l),m/(m/l))\) .

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define MAXN 10000000+5 /* 莫比乌斯函数筛 begin */ int mu[MAXN];
int pri[MAXN],pritop;
bool notpri[MAXN];
//pritop从1开始计数 int sumdmu[MAXN],prefixsumdmu[MAXN]; void sieve3(int n) {
notpri[1]=mu[1]=1;
for(int i=2; i<=n; i++) {
if(!notpri[i])
pri[++pritop]=i,mu[i]=-1;
for(int j=1; j<=pritop&&i*pri[j]<=n; j++) {
notpri[i*pri[j]]=1;
//略有不同
if(i%pri[j])
mu[i*pri[j]]=-mu[i];
else {
mu[i*pri[j]]=0;
break;
}
}
} for(int j=1; j<=pritop; j++) {
for(int i=1;i*pri[j]<=n;i++){
sumdmu[i*pri[j]]+=mu[i];
}
}
for(int i=1;i<=n;i++)
prefixsumdmu[i]=prefixsumdmu[i-1]+sumdmu[i];
} /* 莫比乌斯函数筛 end */ //整除分块,n,m版
ll aliquot_patition(int n,int m) {
ll ans=0;
int N=min(n,m);
for(int l=1,r; l<=N; l=r+1) {
r=min(n/(n/l),m/(m/l));
ans+=1ll*(n/l)*(m/l)*(prefixsumdmu[r]-prefixsumdmu[l-1]);
}
return ans;
} int main() {
sieve3(10000000);
int T;
scanf("%d",&T);
while(T--){
int n,m;
scanf("%d%d",&n,&m);
printf("%lld\n",aliquot_patition(n,m));
}
}

洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块的更多相关文章

  1. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  2. 洛谷 P2257 YY的GCD

    洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans ...

  3. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  4. 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)

    题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...

  5. 洛谷P2257 YY的GCD(莫比乌斯反演)

    传送门 原来……莫比乌斯反演是这么用的啊……(虽然仍然不是很明白) 首先,题目所求如下$$\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=prim]$$ 我们设$f(d)$表示$g ...

  6. 洛谷 P2257 YY的GCD 题解

    原题链接 庆祝: 数论紫题 \(T4\) 达成! 莫比乌斯 \(T1\) 达成! yy 真是个 神犇 前记 之前我觉得: 推式子,直接欧拉筛,筛出个 \(\phi\),然后乱推 \(\gcd\) 就行 ...

  7. 洛谷P2257 YY的GCD

    今日份是数论 大概是..从小学奥数到渐渐毒瘤 那就简单列一下目录[大雾 同余 质数密度 唯一分解定理 互质 完全剩余系 简化剩余系 欧拉函数 逆元 斐蜀定理 阶(及其性质) 欧拉定理 费马小定理 原根 ...

  8. Luogu P2257 YY的GCD 莫比乌斯反演

    第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...

  9. Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)

    2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...

随机推荐

  1. 求两个有序数组的中位数(4. Median of Two Sorted Arrays)

    先吐槽一下,我好气啊,想了很久硬是没有做出来,题目要求的时间复杂度为O(log(m+n)),我猜到了要用二分法,但是没有想到点子上去.然后上网搜了一下答案,感觉好有罪恶感. 题目原型 正确的思路是:把 ...

  2. 从头认识java-15.1 填充容器(2)-利用Collection的addAll方式

    接着上一章节,我们继续介绍填充容器. 这一章节我们结束还有一种填充容器的方式:addAll 样例: package com.ray.ch15; import java.util.ArrayList; ...

  3. Webkit二:RenderTree 创建

    RenderObject 作为所有Render 树节点的基类,完全类似与DOM树中的Node基类,它是构成Render 树的基础,作用非比寻常,其中包含了构成Render 树所可能涉及到的一些基本属性 ...

  4. 自定义 spinner

    http://blog.sina.com.cn/s/blog_3e333c4a010151cj.html

  5. SEO大师分析的八条

  6. windows 复制 文本文件内容 到剪切板

    shell  打开 type filename | clip

  7. ABAP 日期栏函数

    在SZC这个中有很多日期函数可以研究借鉴   ABAP - 日期格式转换 现在提供以下一些日期格式转换的函数: Below are several FMs which can be used to c ...

  8. (转)SDP协议概述

    1 简介 SDP 完全是一种会话描述格式, 它不属于传输协议. 它使用不同的适当的传输协议,包括会话通知协议(SAP).会话初始协议(SIP). 实时流协议(RTSP).MIME 扩展协议的电子邮件以 ...

  9. Android Studio 模拟器无法打开 emulator: ERROR: x86 emulation currently requires hardware

    首先要打开SDK的下载位置,找到以下陌路: android-sdk\extras\intel\Hardware_Accelerated_Execution_Manager\IntelHaxm.exe ...

  10. Safair浏览器 时间戳转化兼容性问题。

    chrome 等浏览器支持 yyyy-MM-dd hh:mm:ss 格式,使用 Date.parse()进行转化 safair 浏览器不知道这种格式,需要将格式设置为 yyyy/MM/dd hh:mm ...