Tarjan 详解
Tarjan 算法
一.算法简介
Tarjan 算法一种由Robert Tarjan提出的求解有向图强连通分量的算法,它能做到线性时间的复杂度。
我们定义:
如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量(strongly connected components)。

例如:在上图中,{1 , 2 , 3 , 4 } , { 5 } , { 6 } 三个区域可以相互连通,称为这个图的强连通分量。
Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。
再Tarjan算法中,有如下定义。
DFN[ i ] : 在DFS中该节点被搜索的次序(时间戳)
LOW[ i ] : 为i或i的子树能够追溯到的最早的栈中节点的次序号
当DFN[ i ]==LOW[ i ]时,为i或i的子树可以构成一个强连通分量。
二.算法图示
以1为Tarjan 算法的起始点,如图

顺次DFS搜到节点6

回溯时发现LOW[ 5 ]==DFN[ 5 ] , LOW[ 6 ]==DFN[ 6 ] ,则{ 5 } , { 6 } 为两个强连通分量。回溯至3节点,拓展节点4.

拓展节点1 , 发现1再栈中更新LOW[ 4 ],LOW[ 3 ] 的值为1

回溯节点1,拓展节点2

自此,Tarjan Algorithm 结束,{1 , 2 , 3 , 4 } , { 5 } , { 6 } 为图中的三个强连通分量。

不难发现,Tarjan Algorithm 的时间复杂度为O(E+V).
三.算法模板
void Tarjan ( int x ) {
dfn[ x ] = ++dfs_num ;
low[ x ] = dfs_num ;
vis [ x ] = true ;//是否在栈中
stack [ ++top ] = x ;
for ( int i=head[ x ] ; i!= ; i=e[i].next ){
int temp = e[ i ].to ;
if ( !dfn[ temp ] ){
Tarjan ( temp ) ;
low[ x ] = gmin ( low[ x ] , low[ temp ] ) ;
}
else if ( vis[ temp ])low[ x ] = gmin ( low[ x ] , dfn[ temp ] ) ;
}
if ( dfn[ x ]==low[ x ] ) {//构成强连通分量
vis[ x ] = false ;
color[ x ] = ++col_num ;//染色
while ( stack[ top ] != x ) {//清空
color [stack[ top ]] = col_num ;
vis [ stack[ top-- ] ] = false ;
}
top -- ;
}
}
Tarjan 详解的更多相关文章
- LCA离线算法Tarjan详解
离线算法也就是需要先把所有查询给保存下来,最后一次输出结果. 离线算法是基于并查集实现的,首先就是初始化P[i] = i. 接下来对于每个点进行dfs: ①首先判断是否有与该点有关的查询,如果当前该点 ...
- Tarjan算法详解
Tarjan算法详解 今天偶然发现了这个算法,看了好久,终于明白了一些表层的知识....在这里和大家分享一下... Tarjan算法是一个求解极大强联通子图的算法,相信这些东西大家都在网络上百度过了, ...
- Tarjan求有向图强连通详解
Tarjan求有向图强连通详解 注*该文章为转发,原文出处已经不得而知 :first-child { margin-top: 0; } blockquote > :last-child { ma ...
- Tarjan 算法详解
一个神奇的算法,求最大连通分量用O(n)的时间复杂度,真实令人不可思议. 废话少说,先上题目 题目描述: 给出一个有向图G,求G连通分量的个数和最大连通分量. 输入: n,m,表示G有n个点,m条边 ...
- trie字典树详解及应用
原文链接 http://www.cnblogs.com/freewater/archive/2012/09/11/2680480.html Trie树详解及其应用 一.知识简介 ...
- 算法笔记--sg函数详解及其模板
算法笔记 参考资料:https://wenku.baidu.com/view/25540742a8956bec0975e3a8.html sg函数大神详解:http://blog.csdn.net/l ...
- Linq之旅:Linq入门详解(Linq to Objects)
示例代码下载:Linq之旅:Linq入门详解(Linq to Objects) 本博文详细介绍 .NET 3.5 中引入的重要功能:Language Integrated Query(LINQ,语言集 ...
- 架构设计:远程调用服务架构设计及zookeeper技术详解(下篇)
一.下篇开头的废话 终于开写下篇了,这也是我写远程调用框架的第三篇文章,前两篇都被博客园作为[编辑推荐]的文章,很兴奋哦,嘿嘿~~~~,本人是个很臭美的人,一定得要截图为证: 今天是2014年的第一天 ...
- EntityFramework Core 1.1 Add、Attach、Update、Remove方法如何高效使用详解
前言 我比较喜欢安静,大概和我喜欢研究和琢磨技术原因相关吧,刚好到了元旦节,这几天可以好好学习下EF Core,同时在项目当中用到EF Core,借此机会给予比较深入的理解,这里我们只讲解和EF 6. ...
随机推荐
- PHP之递归函数
https://www.cnsecer.com/4146.html http://www.jb51.net/article/71424.htm //一列数字的规则如下:1,1,2,3,5,8,13,2 ...
- 洛谷U3348 A2-回文数
U3348 A2-回文数 题目背景 方方方很喜欢回文数,于是就有了一道关于回文数的题目. 题目描述 求从小到大第n(1<=n<=10^18)个回文数. 注释:出题人认为回文数不包括0. 输 ...
- js中的原型以及原型链
在js中原型是每个构造函数的属性: 这个算 js 核心概念的一部分 var f1 = new Foo(); 对象 f1 的构造函数就是 Foo , f1的原型 __proto__ 就指向构造函数 Fo ...
- VUE中获取url中的值
如图:获取值 一:main.js中写入 const router = new VueRouter({ routes: [ { path: '/goodsinfo/:goodsId', componen ...
- MySQL 的视图、触发器、事务、存储过程、函数
MySQL 的视图.触发器.事务.存储过程.函数 阅读目录 一 视图 二 触发器 三 事务 四 存储过程 五 函数 六 流程控制 一 视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句 ...
- Codeforces Round 56-A. Dice Rolling(思维题)
time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...
- 基于.NetCore2.1。服务类库采用.Net Standard2.0,兼容.net 4.6.1消息推送服务
基于.NetCore2.1.服务类库采用.Net Standard2.0,兼容.net 4.6.1消息推送服务 https://www.cnblogs.com/ibeisha/p/weixinServ ...
- 使用Zeppelin时出现sh interpreter not found错误的解决办法(图文详解)
不多说,直接上干货! 问题详解 http://192.168.80.145:8099/#/notebook/2CSV2VT5S 相关博客是 Zeppelin的入门使用系列之使用Zeppelin运行sh ...
- Adobe CC Family (CC 2015) 大师版
Adobe CC Family (CC 2015) 大师版 v5.6#2 ###请彻底卸载旧版后再安装本版! 更新 Adobe Digital Publishing CC 2016.1更新 Adobe ...
- pom文件jar包缺失问题
一般情况,不在中央仓库的jar包,比如自己的版本,要用的话打入maven私服 在eclipse中引入其他项目(包含jar包),类似于放入了私服,删除工程源文件,会导致别的工程引用此jar包失效