设在第 $x$ 天二人都 lucky,则有 $\DeclareMathOperator{\lcm}{lcm}$
$ x = y_a t_a + R_a $
$ x= y_b t_ b + R_b$

约束条件:
$ l_a \le R_a \le r_a$,$l_b \le R_b \le r_b$
$ y_a, y_b \ge 0$

写成同余方程组

\begin{cases}
x \equiv R_a \pmod{t_a} \\
x \equiv R_b \pmod{t_b}
\end{cases}

设 $x_0$ 是上述同余方程组的一个特解,则其通解可表为 $x = x_0 + k\lcm(t_a, t_b)$,$k\in\mathbb Z$ 。

容易证明,同余方程组

\begin{cases}
x \equiv r_1 \pmod{m_1} \\
x \equiv r_2 \pmod{m_2}
\end{cases}
有解的充要条件是 $\gcd(m_1,m_2) \mid (r_1 - r2)$,此充要条件亦可写成 $r_2 = r_1 + k \gcd(m_1,m_2), k\in\mathbb Z$,或者写成 $r_1 \equiv r_2 \pmod{\gcd(m_1,m_2)}$ 。

解法:二分答案。
实现:http://codeforces.com/contest/1055/submission/45569689

总结

求解形如
\begin{equation}
\begin{cases}
x \equiv a_1 \pmod{m_1} \\
x \equiv a_2 \pmod{m_2} \\
\vdots \\
x \equiv a_n \pmod{m_n}
\end{cases} \label{E:0}
\end{equation}
的同余方程组。

考虑两个方程构成的同余方程组
\begin{equation}
\begin{cases}
x \equiv a_1 \pmod{m_1} \\
x \equiv a_2 \pmod{m_2}
\end{cases}\label{E:1}
\end{equation}

\begin{equation}
\begin{cases}
x = m_1 s + a_1 \\
x = m_2 t + a_2
\end{cases}\label{E:2}
\end{equation}
$s, t$ 满足方程
\begin{equation}
m_1 s + a_1 = m_2 t + a_2 \label{E:3}
\end{equation}
根据裴蜀定理,\eqref{E:3} 有解的充要条件是 $\gcd(m_1,m_2)\mid (a_1 - a_2)$ 。以下假设此条件成立,并令 $d = \gcd(m_1,m_2)$ 。\eqref{E:3} 亦可写成
\begin{equation}
m_1 s = m_2 t + (a_2 - a_1) \label{E:4}
\end{equation}
方程 \eqref{E:4} 等价于
\begin{equation}
m_1 s \equiv a_2 - a_1 \pmod{m_2}\label{E:5}
\end{equation}
注意:一个不定方程等价于一个同余方程。要熟悉这两种形式的相互转化。
方程 \eqref{E:5} 又等价于
\begin{equation}
\frac{m_1}{d} s \equiv \frac{a_2 - a_1}{d} \pmod{ \frac{m_2}{d} } \label{E:6}
\end{equation}
解得
\begin{equation*}
s \equiv \left(\frac{m_1}{d}\right)^{-1}\frac{a_2 - a_1}{d} \pmod{ \frac{m_2}{d} } \label{E:7}
\end{equation*}
其中 $\left(\frac{m_1}{d}\right)^{-1}$ 表示 $\frac{m_1}{d}$ 在模 $ \frac{m_2}{d} $ 下的逆元,可用扩展欧几里得算法求得。令 $ b = \left(\frac{m_1}{d}\right)^{-1}\frac{a_2 - a_1}{d} $,有
\begin{equation}
s = k \frac{m_2}{d} + b \label{E:8}
\end{equation}
将 \eqref{E:8} 代入 \eqref{E:2},得
\begin{equation}
x = k \frac{m_1m_2}{d} + m_1 b + a_1 \label{E:9}
\end{equation}

\begin{equation}
x \equiv m_1 b + a_1 \pmod{ \frac{m_1 m_2}{d}} \label{E:10}
\end{equation}
至此,我们将同余方程组 \eqref{E:1} 化成了等价(同解)的同余方程 \eqref{E:10} 。

我们证明了

若 \eqref{E:1} 有解,则其在模 $\lcm(m_1,m_2)$ 下有唯一解 $x_0 $。

故可用 $x \equiv x_0 \pmod{\lcm(m_1,m_2)}$ 取代 \eqref{E:0} 中的前两个方程,不断如此操作,最后将得到 $x \equiv a \pmod{\lcm(a_1, a_2, \dots, a_m)}$,这样就得到了 \eqref{E:0} 的通解,也意味着

若 \eqref{E:0} 有解,则其在模 $\lcm(m_1,m_2, \dots, m_n)$ 下有唯一解。

后记

Miskcoo 的文章 从 \eqref{E:3} 的特解和通解入手证明了 \eqref{E:2} 在模 $\lcm(m_1,m_2)$ 下有唯一解,其思路更为简洁。

用扩展 Euclid 算法求出 \eqref{E:3} 的特解 $s',t'$,即可得到 \eqref{E:2} 的特解 $x_0 = s'm_1 + a_1$,然后用 $x \equiv x_0 \pmod{\lcm(m_1, m_2)}$ 替换 \eqref{E:0} 中的前两个方程。

Reference

https://blog.csdn.net/qq_29980371/article/details/71053219

http://blog.miskcoo.com/2014/09/chinese-remainder-theorem

Mail.Ru Cup 2018 Round 2 Problem C Lucky Days的更多相关文章

  1. 【Mail.Ru Cup 2018 Round 2 C】 Lucky Days

    [链接] 我是链接,点我呀:) [题意] [题解] 题解的作者: manish_joshi 对于任意一个k 因为那条直线(关于x,y的方程可以看出一条直线)的斜率>= 所以肯定会经过第一象限. ...

  2. [codeforces Mail.Ru Cup 2018 Round 3][B Divide Candies ][思维+数学]

    https://codeforces.com/contest/1056/problem/B 题意:输入n,m    求((a*a)+(b*b))%m==0的(a,b)种数(1<=a,b<= ...

  3. [codeforces Mail.Ru Cup 2018 Round 1 D][ xor 操作]

    http://codeforces.com/contest/1054/problem/D 题目大意:一个序列a1 a2...an,可以对若干个元素进行取反,使所得的新序列异或和为0的区间个数最多. 题 ...

  4. Mail.Ru Cup 2018 Round 3 B. Divide Candies

    题目链接 分析一下题意可以得到题目要求的是满足下面这个 公式的不同的i,ji,ji,j的方案数; 即(i2+j2)mod&ThinSpace;&ThinSpace; m=0 (n ≤  ...

  5. Mail.Ru Cup 2018 Round 3

    A:签到 #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> # ...

  6. Mail.Ru Cup 2018 Round 2

    A:阅读理解. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> ...

  7. Mail.Ru Cup 2018 Round 2 Solution

    A. Metro Solved. 题意: 有两条铁轨,都是单向的,一条是从左往右,一条是从右往左,Bob要从第一条轨道的第一个位置出发,Alice的位置处于第s个位置,有火车会行驶在铁轨上,一共有n个 ...

  8. Mail.Ru Cup 2018 Round 3 Solution

    A. Determine Line Water. #include <bits/stdc++.h> using namespace std; ]; int main() { while ( ...

  9. Mail.Ru Cup 2018 Round 1

    A. Elevator or Stairs? 签. #include <bits/stdc++.h> using namespace std; ]; int main() { while ...

随机推荐

  1. 【BZOJ1857】传送带(分治经典:三分套三分)

    点此看题面 大致题意: 一个二维平面上有两条传送带\(AB\)和\(CD\),\(AB\)传送带的移动速度为\(P\),\(CD\)传送带的移动速度为\(Q\),步行速度为\(R\),问你从\(A\) ...

  2. 为项目创建podfile

    由于写项目 不常用到,容易忘记,记录一下 第一步:新建一个项目: 第二步:打开终端,输入 cd 第三步:把项目拖入终端,(获取项目路径) 第四步:回车,输入 pod init (生成podfile 文 ...

  3. Ubuntu使用问题解决办法

    http://blog.csdn.net/ll_0520/article/details/6077913

  4. 复选框(checkbox)、多选框

    1.需求分析 可同时选中多个选项,实现全选.全不选.反选等功能. 2.技术分析 基础的HTML.CSS.JavaScript. 3.详细分析 3.1 HTML部分 图示是一个列表加底部一段文字说明,列 ...

  5. vmware:使用.zip文件在vmware中安装操作系统

    问题描述: 之前在vmware中安装系统时,全部都是加载的.iso文件来实现.后面同事给了一个zip包,解压后是".vmdk"等一系列具体的文件.一时间不知道怎么安装系统了,搜网页 ...

  6. c++ bitset 10进制转二进制

    #include <bitset> using namespace std; void main() { int a; cin>>a; cout<<bitset&l ...

  7. Java传值分析

    public class Example{String str=new String("good");char[] ch={'a','b','c'};public static v ...

  8. ubuntu18.04 and Linux mint 19安装virtualbox

    1.1  安装Virtualbox root@amarsoft-ZHAOYANG-K43c-:~# apt-get install virtualbox -y 1.2  显示Virtualbox桌面图 ...

  9. 【mysql】 数据库字符集和排序规则

    库的字符集影响表和字段的字符集 数据库字符集 >表的字符集 > 字段的字符集 (从前往后优先级由低到高,从左往右继承,如果表没设置字符集,继承数据库的,如果字段没设置,继承表的) 数据库的 ...

  10. JZOJ 3388. 【NOIP2013模拟】绿豆蛙的归宿

    3388. [NOIP2013模拟]绿豆蛙的归宿 (Standard IO) Time Limits: 1000 ms  Memory Limits: 131072 KB  Detailed Limi ...