【分析】

“虽然不是求什么最大的最小值(或者反过来)什么的……但还是可以用二分的,因为之前就做过一道小数型二分题(下面等会讲) 考虑二分面积,下界L=0,上界R=∑ni=1nπ∗ri2。对于一个中值x和一张半径r的饼来说,这张饼能够分出的最多分数显然是:⌊π∗r2x⌋,所以我们只需要求出∑ni=1⌊π∗ri2x⌋,判断其与f+1的关系即可

特别要注意的一点:π的大小!,因为r≤104r≤104,所以r2≤108r2≤108,又因为题目要求精确到三位小数,所以ππ就要精确到10-11,即π=3.14159265358

Pie

Problem Description
My birthday is coming up and traditionally I'm serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This piece can be one whole pie though.

My friends are very annoying and if one of them gets a bigger piece than the others, they start complaining. Therefore all of them should get equally sized (but not necessarily equally shaped) pieces, even if this leads to some pie getting spoiled (which is better than spoiling the party). Of course, I want a piece of pie for myself too, and that piece should also be of the same size.

What is the largest possible piece size all of us can get? All the pies are cylindrical in shape and they all have the same height 1, but the radii of the pies can be different.

 
Input
One line with a positive integer: the number of test cases. Then for each test case:
---One line with two integers N and F with 1 <= N, F <= 10 000: the number of pies and the number of friends.
---One line with N integers ri with 1 <= ri <= 10 000: the radii of the pies.
 
Output
For each test case, output one line with the largest possible volume V such that me and my friends can all get a pie piece of size V. The answer should be given as a floating point number with an absolute error of at most 10^(-3).
 
Sample Input
3
3 3
4 3 3
1 24
5
10 5
1 4 2 3 4 5 6 5 4 2
 
Sample Output
25.1327
3.1416
50.2655
 
Source
 
Recommend
wangye   |   We have carefully selected several similar problems for you:  1551 2899 2446 2298 2333 
 
【题意】:有n个饼,半径为ri(ri≤104ri≤104),分给m+1个人,要求每个人分到的面积是一样的,而且每个人分到的饼是连续的一块(即不能是几个小块凑起来的),求能够分到的最大面积,精确到三位小数
 
【代码】:

#include<bits/stdc++.h>
using namespace std;
#define Lint long long int
#define pi acos(-1)
const double eps=1e-;
const int MAXN=;
double r[MAXN],s[MAXN];
double n,L,R;
int T,m;
bool check(double mid)
{
int ret=;
for(int i=;i<=n;i++)
ret+=(int)(s[i]/mid);
return ret>=m; //一旦出现Pie的数目大于等于到场人数的话就true
}
int main()
{
scanf("%d",&T);
while( T-- )
{
L=R=;
scanf("%lf%d",&n,&m),m++;
//m的原来数值只是朋友的个数,而主人公也是一员,所以加1,加上主人公
for(int i=;i<=n;i++)
{
scanf("%lf",&r[i]);
s[i]=pi*r[i]*r[i]; //这里是直接把所输入的半径变量变成面积,方便下面计算
R+=s[i]; // 上界 也可以写成R=max(R,r[i]);这里是吧右边界给设成pie里面的最大的那一个
}
while( R-L>eps )
{
double mid=(L+R)/;
if( check( mid ) )
//如果返回值为真,那么代表我们可以用此时mid的大小来替换左边界,看是否存在比mid还大但仍然满足所有人都能吃到一样大小的pie,因为题目上说的是尽可能大
L=mid;
else
//一旦发现不符合的话,此时mid的大小就得替换掉右边界,继续在比mid小的大小里面找符合题目条件的大小
R=mid;
}
//最后输出l,因为只有满足条件的时候L的值才变,所以对于L来说,它是永远符合题目条件的那个值
printf("%.4lf\n",L);
}
return ;
}

二分

 

  

HDU 1969 Pie【二分】的更多相关文章

  1. HDU 1969 Pie(二分查找)

    Problem Description My birthday is coming up and traditionally I'm serving pie. Not just one pie, no ...

  2. HDU 1969 Pie(二分,注意精度)

    Pie Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  3. HDU 1969 Pie [二分]

    1.题意:一项分圆饼的任务,一堆圆饼共有N个,半径不同,厚度一样,要分给F+1个人.要求每个人分的一样多,圆饼允许切但是不允许拼接,也就是每个人拿到的最多是一个完整饼,或者一个被切掉一部分的饼,要求你 ...

  4. (step4.1.2)hdu 1969(Pie——二分查找)

    题目大意:n块馅饼分给m+1个人,每个人的馅饼必须是整块的,不能拼接,求最大的. 解题思路: 1)用总饼的体积除以总人数,得到每个人最大可以得到的V.但是每个人手中不能有两片或多片拼成的一块饼. 代码 ...

  5. hdu 1969 Pie(二分查找)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1969 Pie Time Limit: 5000/1000 MS (Java/Others)    Me ...

  6. 题解报告:hdu 1969 Pie(二分)

    Problem Description My birthday is coming up and traditionally I'm serving pie. Not just one pie, no ...

  7. hdu 1969 pie 卡精度的二分

    Pie Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  8. HDU 1969 Pie(二分法)

    My birthday is coming up and traditionally I’m serving pie. Not just one pie, no, I have a number N ...

  9. HDU 1969 精度二分

    Pie Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. word域代码判断奇偶插入分页符

    阿拉伯数字页码判断奇偶插入分页符(PAGE表示当前页码,QUOTE 12表示插入分页符) {IF{=MOD({PAGE},2)} = 1 "{ QUOTE 12}" " ...

  2. python hashlib模块学习

    目录 hashlib 模块 破解密码 hmac 模块 hashlib 模块 1.干嘛用的: 对字符进行加密,其实就是一个自定义的字符编码表,我们原来接触的是计算机语言0和1然后转化成字符,而hashl ...

  3. SmartGit 30天评估期结束解决办法

    smartgit 需要输入序列号解决办法: 1.找到路径: %APPDATA%\syntevo\SmartGit\<main-smartgit-version> 然后删除: setting ...

  4. 持续化集成Jenkins的系统配置

    最近在研究selenium2自动化测试,用到持续化集成jenkins.由于之前仅限于使用,而没有真正动手配置过,所以现在学习从零开始,搭建持续化集成,故而有了这篇博客. 先介绍一下项目持续集成测试,这 ...

  5. STM8 EEPROM心得

    对于STM8来说,其内部的EEPROM确实是个不错的东西,而且STM8S103/105价格已经非常便宜了,当然也可以用STM8S003/005代替,而且价格更便宜,大概在,1.2/2.0元左右,比10 ...

  6. 2019 study list

    分析工具: (1)SQL   select from   where   group by having   order by   limit   运算符(算数运算符+-*/.比较运算符>< ...

  7. python面试题解析(前端、框架和其他)

    答: HTTP是一个属于应用层的面向对象的协议,由于其简捷.快速的方式,适用于分布式超媒体信息系统.它于1990年提出,经过几年的使用与发展,得到不断地完善和扩展.目前在WWW中使用的是HTTP/1. ...

  8. 使用css Flexbox实现垂直居中

    CSS布局对我们来说一直是个噩梦,我们都认为flexbox是我们的救世主.是否真的如我们说说,还有待观察,但是flexbox确非常轻松的解决css长久一来比较难解决的居中问题.让我们来看看到底有多容易 ...

  9. Java学习笔记3---unable to launch

    环境配置好后,在eclipse下编写HelloWorld程序: ①创建新工程 ②创建.java文件,命名为HelloWorld ③在源文件中添加main方法,代码如下: public void mai ...

  10. PTA 11-散列2 Hashing (25分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/679 5-17 Hashing   (25分) The task of this pro ...