洛谷P3768 简单的数学题 【莫比乌斯反演 + 杜教筛】
题目描述##
求
\]
\(n<=10^{10}\),\(p\)是质数
题解##
推导很长就省略啦,,
有空补回来
最后推得这个式子:
\]
前边分块,后边杜教筛
杜教筛的\(g(n)\)取\(g(n) = n^2\)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<map>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 5000005,maxm = 100005,INF = 1000000000;
typedef map<LL,LL> Map;
Map _f;
LL P,N,v6,v2;
LL p[maxn],pi,phi[maxn],f[maxn];
int isn[maxn];
LL qpow(LL a,LL b){
LL ans = 1;
for (; b; b >>= 1,a = a * a % P)
if (b & 1) ans = ans * a % P;
return ans;
}
void init(LL n){
v6 = qpow(6,P - 2);
v2 = qpow(2,P - 2);
N = (LL)pow(n,2.0 / 3.0);
phi[1] = 1;
for (LL i = 2; i < N; i++){
if (!isn[i]) p[++pi] = i,phi[i] = (i - 1) % P;
for (LL j = 1; j <= pi && i * p[j] < N; j++){
isn[i * p[j]] = true;
if (i % p[j] == 0){
phi[i * p[j]] = phi[i] * p[j] % P;
break;
}
phi[i * p[j]] = phi[i] * (p[j] - 1) % P;
}
}
for (LL i = 1; i < N; i++) f[i] = (f[i - 1] + i * i % P * phi[i] % P) % P;
}
LL sum(LL n){
n %= P;
LL tmp = n * (n + 1) % P * v2 % P;
return tmp * tmp % P;
}
LL sum2(LL n){
n %= P;
return n * (n + 1) % P * (2 * n % P + 1) % P * v6 % P;
}
LL S(LL n){
if (n < N) return f[n];
Map::iterator it;
if ((it = _f.find(n)) != _f.end())
return it->second;
LL ans = n % P * ((n + 1) % P) % P * v2 % P;
ans = ans * ans % P;
for (LL i = 2,nxt; i <= n; i = nxt + 1){
nxt = n / (n / i);
ans = (ans - (sum2(nxt) - sum2(i - 1)) % P * S(n / i) % P) % P;
}
ans = (ans + P) % P;
return _f[n] = ans;
}
int main(){
LL n,ans = 0;
cin >> P >> n;
init(n);
for (LL i = 1,nxt; i <= n; i = nxt + 1){
nxt = n / (n / i);
ans = (ans + sum(n / i) * ((S(nxt) - S(i - 1)) % P) % P) % P;
}
ans = (ans + P) % P;
cout << ans << endl;
return 0;
}
洛谷P3768 简单的数学题 【莫比乌斯反演 + 杜教筛】的更多相关文章
- 洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛
题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i ...
- 「洛谷P3768」简单的数学题 莫比乌斯反演+杜教筛
题目链接 简单的数学题 题目描述 输入一个整数n和一个整数p,你需要求出 \[\sum_{i=1}^n\sum_{j=1}^n (i\cdot j\cdot gcd(i,j))\ mod\ p\] ...
- luogu 3768 简单的数学题 (莫比乌斯反演+杜教筛)
题目大意:略 洛谷传送门 杜教筛入门题? 以下都是常规套路的变形,不再过多解释 $\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}ijgcd(i,j)$ $\sum ...
- LOJ#6229. 这是一道简单的数学题(莫比乌斯反演+杜教筛)
题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^i\frac{lcm(i,j)}{gcd(i,j)}\] 答案对\(10^9+7\)取模. \(n< ...
- [复习]莫比乌斯反演,杜教筛,min_25筛
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...
- 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...
- [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...
- 洛谷 - P3768 - 简单的数学题 - 欧拉函数 - 莫比乌斯反演
https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i ...
- 【刷题】洛谷 P3768 简单的数学题
题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\),其中gcd ...
- 洛谷 P3768 简单的数学题 解题报告
P3768 简单的数学题 题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数\(n\)和一个整数\(p,\)你需要求出\((\sum_{i=1}^n\sum_{j=1}^n ijgc ...
随机推荐
- coredata 关系的删除规则
http://blog.csdn.net/Hello_Hwc/article/details/46375517 关系的删除规则-Delete Rule Deny 关系的destination中只要有一 ...
- OO作业第三单元总结
目录 一.JML语言理论基础及应用工具链 二.部署JMLUnitNG,自动生成测试用例 三.架构设计 第一次作业 第二次作业 第三次作业 四.Bug分析 五.心得体会 一.JML语言理论基础及应用工具 ...
- Word2vec资料
Word2vec 很好的资料 Word2Vec-知其然知其所以然 https://www.zybuluo.com/Dounm/note/591752 Word2Vec数学原理讲解 http://w ...
- javaweb基础(11)_cookie的会话管理
一.会话的概念 会话可简单理解为:用户开一个浏览器,点击多个超链接,访问服务器多个web资源,然后关闭浏览器,整个过程称之为一个会话. 有状态会话:一个同学来过教室,下次再来教室,我们会知道这个同学曾 ...
- ajax的序列化表单提交
通过传统的 form 表单提交的方式上传文件 ? 1 2 3 4 <form id="uploadForm" action="" method=" ...
- linux之切换用户su(switch user)
1.切换至root su 或 su root然后输入密码 这种只切换身份,不切换home工作目录 su - 或 su - root然后输入密码 这种不仅切换身份,而且切换home工作目录 2.切换至普 ...
- 如何使Recovery分区正常工作
通常安装完系统后,在进入Clover菜单选择Recovery分区后是进不去的,对于我这种完美强迫症患者来说这是不能忍的,最后,终于在网上找到个简单办法让它工作,废话不多说,上命令: 先找到Recove ...
- Missing letters-freecodecamp算法题目
Missing letters 1.要求 从传递进来的字母序列中找到缺失的字母并返回它. 如果所有字母都在序列中,返回 undefined. 2.思路 设定缺失变量miss 在for循环遍历字符串的各 ...
- 【哈希 二分】bzoj2084: [Poi2010]Antisymmetry
可以用manacher或者SA搞过去的:非常有趣的hash题 Description 对于一个01字符串,如果将这个字符串0和1取反后,再将整个串反过来和原串一样,就称作“反对称”字符串.比如0000 ...
- MySQL 自学笔记_Union(组合查询)
1. Union查询简介 组合查询:有时在使用select语句进行数据查询时,想要将多个select语句在一个查询结果中输出,此时就需要使用Union关键字. Union的使用方法:用union将多个 ...