Codeforces Round #105 (Div. 2) E. Porcelain —— DP(背包问题)
题目链接:http://codeforces.com/problemset/problem/148/E
1 second
256 megabytes
standard input
standard output
During her tantrums the princess usually smashes some collectable porcelain. Every furious shriek is accompanied with one item smashed.
The collection of porcelain is arranged neatly on n shelves. Within each shelf the items are placed in one row, so that one can access
only the outermost items — the leftmost or the rightmost item, not the ones in the middle of the shelf. Once an item is taken, the next item on that side of the shelf can be accessed (see example). Once an item is taken, it can't be returned to the shelves.
You are given the values of all items. Your task is to find the maximal damage the princess' tantrum of m shrieks can inflict on the
collection of porcelain.
The first line of input data contains two integers n (1 ≤ n ≤ 100)
and m (1 ≤ m ≤ 10000).
The next n lines contain the values of the items on the shelves: the first number gives the number of items on this shelf (an integer
between 1 and 100, inclusive),
followed by the values of the items (integers between 1 and 100,
inclusive), in the order in which they appear on the shelf (the first number corresponds to the leftmost item, the last one — to the rightmost one). The total number of items is guaranteed to be at least m.
Output the maximal total value of a tantrum of m shrieks.
2 3
3 3 7 2
3 4 1 5
15
1 3
4 4 3 1 2
9
In the first case there are two shelves, each with three items. To maximize the total value of the items chosen, one can take two items from the left side of the first shelf and one item from the right side of the second shelf.
In the second case there is only one shelf, so all three items are taken from it — two from the left side and one from the right side.
题解:
方法一:
1.对于每个书架,求出每种长度下的首尾相连的最大连续和。
2.通过类似解决背包问题的方法,求得在这些最大连续和的组合下的最大值,即为答案。
方法二:
反向思维:求两边的和最大,即求中间的和最小。
1.对于每个书架,求出每种长度下的最小连续和。
2.通过类似解决背包问题的方法,求得在这些最小连续和的组合下的最小值,然后再用总和减去这个最小值,即为答案。
写法:
i为第i个书架, j为dp到当前待组合的个数, k则为对于每一个书架相应的连续个数。
写法一:从小往大推,此时dp数组需要开二维。
写法二:从大往小推,此时dp数组只需开一维。
注意:写法二必须保证这一阶段的数据只能从上一阶段的数据转移过来, 而不能从同一阶段转移过来,否则会出现重复。
方法一写法一:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const double eps = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int maxn = 1e4+; int n, m;
int dp[][maxn];
int a[][], sum[][], s[][]; void init()
{
scanf("%d%d",&n, &m);
for(int i = ; i<=n; i++)
{
scanf("%d",&a[i][]);
for(int j = ; j<=a[i][]; j++)
scanf("%d",&a[i][j]);
} for(int i = ; i<=n; i++) //求前缀和
for(int j = ; j<=a[i][]; j++)
sum[i][j] = sum[i][j-] + a[i][j]; for(int i = ; i<=n; i++) //求每个书架每种长度下,首尾相连序列的最大连续和
for(int l = ; l<=a[i][]; l++)
for(int r = ; l+r<=a[i][]; r++)
s[i][l+r] = max(s[i][l+r], sum[i][l] + sum[i][a[i][]] - sum[i][a[i][]-r]);
} void solve()
{
for(int i = ; i<=n; i++) //01背包的拓展,每个状态都从O(n)转移过来, 而普通背包则为O(1)
{
for(int j = ; j<=m; j++) //别忘了上一阶段的j状态也参与当前阶段j状态的转移
dp[i][j] = dp[i-][j]; for(int j = ; j<=m; j++)
for(int k = ; k<=min(j,a[i][]); k++)
dp[i][j] = max(dp[i][j], s[i][k]+dp[i-][j-k]);
}
cout<<dp[n][m]<<endl;
} int main()
{
init();
solve();
}
方法一写法二:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const double eps = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int maxn = 1e4+; int n, m;
int dp[maxn];
int a[][], sum[][], s[][]; void init()
{
scanf("%d%d",&n, &m);
for(int i = ; i<=n; i++)
{
scanf("%d",&a[i][]);
for(int j = ; j<=a[i][]; j++)
scanf("%d",&a[i][j]);
} for(int i = ; i<=n; i++)
for(int j = ; j<=a[i][]; j++)
sum[i][j] = sum[i][j-] + a[i][j]; for(int i = ; i<=n; i++)
for(int l = ; l<=a[i][]; l++)
for(int r = ; l+r<=a[i][]; r++)
s[i][l+r] = max(s[i][l+r], sum[i][l] + sum[i][a[i][]] - sum[i][a[i][]-r]);
} void solve()
{
for(int i = ; i<=n; i++)
for(int j = m; j>=; j--)
for(int k = ; k<=min(j,a[i][]); k++)
dp[j] = max(dp[j], s[i][k]+dp[j-k]); cout<<dp[m]<<endl;
} int main()
{
init();
solve();
}
方法二写法一:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const double eps = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int maxn = 1e4+; int n, m, all;
int dp[][maxn];
int a[][], sum[][], s[][]; void init()
{
scanf("%d%d",&n, &m);
m = -m;
for(int i = ; i<=n; i++)
{
scanf("%d",&a[i][]);
for(int j = ; j<=a[i][]; j++)
scanf("%d",&a[i][j]), all += a[i][j];
m += a[i][];
} for(int i = ; i<=n; i++) //前缀和
for(int j = ; j<=a[i][]; j++)
sum[i][j] = sum[i][j-] + a[i][j]; for(int i = ; i<=n; i++) //最小连续和,因为“最小”,所以需要初始化为最大
for(int j = ; j<=a[i][]; j++)
s[i][j] = INF; for(int i = ; i<=n; i++) //求最小连续和
for(int j = ; j<=a[i][]; j++)
for(int k = ; k<=j; k++)
s[i][j-k+] = min(s[i][j-k+], sum[i][j]-sum[i][k-]);
} void solve()
{
for(int i = ; i<=n; i++) //需要所有都初始化为最大
for(int j = ; j<=m; j++)
dp[i][j] = INF; for(int i = ; i<=n; i++)
{
for(int j = ; j<=m; j++)
dp[i][j] = dp[i-][j]; for(int j = ; j<=m; j++)
for(int k = ; k<=min(j,a[i][]); k++)
dp[i][j] = min(dp[i][j], s[i][k]+dp[i-][j-k]);
}
cout<<all - dp[n][m]<<endl;
} int main()
{
init();
solve();
}
方法二写法二:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const double eps = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int maxn = 1e4+; int n, m, all;
int dp[maxn];
int a[][], sum[][], s[][]; void init()
{
scanf("%d%d",&n, &m);
m = -m;
for(int i = ; i<=n; i++)
{
scanf("%d",&a[i][]);
for(int j = ; j<=a[i][]; j++)
scanf("%d",&a[i][j]), all += a[i][j];
m += a[i][];
} for(int i = ; i<=n; i++)
for(int j = ; j<=a[i][]; j++)
sum[i][j] = sum[i][j-] + a[i][j]; for(int i = ; i<=n; i++)
for(int j = ; j<=a[i][]; j++)
s[i][j] = INF; for(int i = ; i<=n; i++)
for(int j = ; j<=a[i][]; j++)
for(int k = ; k<=j; k++)
s[i][j-k+] = min(s[i][j-k+], sum[i][j]-sum[i][k-]);
} void solve()
{
for(int j = ; j<=m; j++)
dp[j] = INF; for(int i = ; i<=n; i++)
for(int j = m; j>=; j--)
for(int k = ; k<=min(j,a[i][]); k++)
dp[j] = min(dp[j], s[i][k]+dp[j-k]); cout<<all-dp[m]<<endl;
} int main()
{
init();
solve();
}
Codeforces Round #105 (Div. 2) E. Porcelain —— DP(背包问题)的更多相关文章
- 水题 Codeforces Round #105 (Div. 2) B. Escape
题目传送门 /* 水题:这题唯一要注意的是要用double,princess可能在一个小时之内被dragon赶上 */ #include <cstdio> #include <alg ...
- Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp
题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...
- Codeforces Round #260 (Div. 1) A - Boredom DP
A. Boredom Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/455/problem/A ...
- Codeforces Round #131 (Div. 1) B. Numbers dp
题目链接: http://codeforces.com/problemset/problem/213/B B. Numbers time limit per test 2 secondsmemory ...
- Codeforces Round #131 (Div. 2) B. Hometask dp
题目链接: http://codeforces.com/problemset/problem/214/B Hometask time limit per test:2 secondsmemory li ...
- Codeforces Round #276 (Div. 1) D. Kindergarten dp
D. Kindergarten Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/proble ...
- Codeforces Round #105 (Div. 2) ABCDE
A. Insomnia cure 哎 只能说英语太差,一眼题我看了三分钟. 题意:给5个数k, l, m, n 和 d,求1~d中能被k, l, m, n 至少一个整除的数的个数. 题解:…… 代码: ...
- Codeforces Round #533 (Div. 2) C.思维dp D. 多源BFS
题目链接:https://codeforces.com/contest/1105 C. Ayoub and Lost Array 题目大意:一个长度为n的数组,数组的元素都在[L,R]之间,并且数组全 ...
- Codeforces Round #539 (Div. 2) 异或 + dp
https://codeforces.com/contest/1113/problem/C 题意 一个n个数字的数组a[],求有多少对l,r满足\(sum[l,mid]=sum[mid+1,r]\), ...
随机推荐
- HDU 2586 How far away ? 离线lca模板题
How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- UVALive - 3700 Interesting Yang Hui Triangle
题目大意就是求一下 杨辉三角的第N行中不能被P整除的有多少个. 直接卢卡斯定理一下就行啦. #include<bits/stdc++.h> #define ll long long usi ...
- BZOJ1014火星人prefix Splay維護序列 + 字符串哈希
@[Splay, 哈希] Description 火星人最近研究了一种操作:求一个字串两个后缀的公共前缀.比方说,有这样一个字符串:\(madamimadam\), 我们将这个字符串的各个字符予以标号 ...
- oracle 树查询
select LPAD('-----',t.menu_level)||t.obj_id,t.*,rowid from imes10dba.tb_adm_menu t start with t.pare ...
- Java中ArrayList的初始容量和容量分配
1.实例化ArrayList时默认不输入大小是10个,并且如果增加到11个时不会报错,会自动扩容. 2.获取指定索引的值时就必须保证ArrayList有这么多个. 3.推荐在new ArrayList ...
- Linux BPF/bcc for Oracle Tracing
Luca Canali on 26 May 2016 Topic: In this post you will find a short discussion and pointers to the ...
- 记一次CDH修改IP
因机房服务器搬迁,需要修改CDH ip ,集群中有6台服务器. 其中配置了ldap,其中卡在了ldap中的坑太深,所以记录一下. 一.服务器IP等地址修改 1.首先在安装cloudera-manage ...
- Odoo车辆管理
odoo车辆管理用于管理公司用车,可以记录以下信息 车辆 车辆的服务合同 车辆的里程 车辆的服务记录 车辆的成本 使用之前,先要进行基本设置 基础设置 维护车辆型号 即维护车辆 ...
- C中的预编译编译链接
http://ke.qq.com/webcourse/index.html#course_id=67888&term_id=100058920&taid=13934591901 ...
- Word Ladder(找出start——end的最短长度)——bfs
Word Ladder Given two words (start and end), and a dictionary, find the length of shortest transform ...