题目链接

http://poj.org/problem?id=2031

题意

给出N个球形的 个体 如果 两个个体 相互接触 或者 包含 那么 这两个个体之间就能够互相通达 现在给出若干个这样的个体 要求 从一个个体 可以到达任意一个另外的个体 如果两个个体之间 本来是不能够相互通达的 那么可以在这两个个体之间 建一座桥梁 现在要求 满足 从任意一个个体就可以到达任意一个另外的个体 需要建设桥梁的最少花费

思路

因为两个球体之间,如果 两个球心的距离 <= 两个球体的半径之和 那么这两个球体 就是 可以通达的 边权为0 反之 边权 就是 球心距离减去半径之和

然后最小生成树 一下 就可以了 要加入 访问标记 因为 边权为0的 也是需要连通的

然后有一个奇怪的点

POJ 上面 我用G++ 提交 最后输出 要用 %.3f

然后用C++ 提交 就没有问题

AC代码

#include <cstdio>
#include <cstring>
#include <ctype.h>
#include <cstdlib>
#include <cmath>
#include <climits>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <map>
#include <stack>
#include <set>
#include <numeric>
#include <sstream>
#include <iomanip>
#include <limits> #define CLR(a, b) memset(a, (b), sizeof(a))
#define pb push_back using namespace std;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair <int, int> pii;
typedef pair <ll, ll> pll;
typedef pair<string, int> psi;
typedef pair<string, string> pss; const double PI = acos(-1.0);
const double E = exp(1.0);
const double eps = 1e-8; const int INF = 0x3f3f3f3f;
const int maxn = 1e2 + 5;
const int MOD = 1e9 + 7; struct node
{
double x, y, z, r;
}q[maxn]; double G[maxn][maxn];
double lowcost[maxn];
int v[maxn]; double cover(node a, node b)
{
double dis = sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y) + (a.z - b.z) * (a.z - b.z));
if (dis < a.r + b.r || fabs(dis - a.r - b.r) < eps)
return 0.0;
return dis - a.r - b.r;
} int n; int findMin()
{
double Min = INF * 1.0;
int flag = 0;
for (int i = 1; i <= n; i++)
{
if (v[i] == 0 && lowcost[i] < Min)
{
Min = lowcost[i];
flag = i;
}
}
return flag;
} double prime()
{
double ans = 0.0;
for (int i = 1; i <= n; i++)
lowcost[i] = G[1][i];
lowcost[1] = 0.0;
v[1] = 1;
for (int i = 2; i <= n; i++)
{
int k = findMin();
if (k)
{
ans += lowcost[k];
lowcost[k] = 0.0;
v[k] = 1;
for (int j = 1; j <= n; j++)
{
if (v[j] == 0 && G[k][j] < lowcost[j])
lowcost[j] = G[k][j];
}
}
}
return ans;
} int main()
{
while (scanf("%d", &n) && n)
{
CLR(v, 0);
for (int i = 1; i <= n; i++)
scanf("%lf%lf%lf%lf", &q[i].x, &q[i].y, &q[i].z, &q[i].r);
for (int i = 1; i <= n; i++)
{
for (int j = i + 1; j <= n; j++)
G[i][j] = G[j][i] = cover(q[i], q[j]);
}
printf("%.3lf\n", prime());
}
}

POJ - 2031 Building a Space Station 【PRIME】的更多相关文章

  1. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  2. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  3. POJ 2031 Building a Space Station【最小生成树+简单计算几何】

    You are a member of the space station engineering team, and are assigned a task in the construction ...

  4. poj 2031 Building a Space Station(prime )

    这个题要交c++, 因为prime的返回值错了,改了一会 题目:http://poj.org/problem?id=2031 题意:就是给出三维坐标系上的一些球的球心坐标和其半径,搭建通路,使得他们能 ...

  5. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  6. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  7. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  8. POJ - 2031 Building a Space Station 三维球点生成树Kruskal

    Building a Space Station You are a member of the space station engineering team, and are assigned a ...

  9. POJ 2031 Building a Space Station (计算几何+最小生成树)

    题目: Description You are a member of the space station engineering team, and are assigned a task in t ...

随机推荐

  1. php+mysql两次左外联跨表查询

    代码如下: $querySel="select * from roomsy rsy left join room ro on rsy.RoomID=ro.ID left join hotel ...

  2. 探秘 flex 上下文中神奇的自动 margin

    为了引出本文的主题,先看看这个问题,最快水平垂直居中一个元素的方法是什么? 水平垂直居中也算是 CSS 领域最为常见的一个问题了,不同场景下的方法也各不相同,各有优劣.嗯,下面这种应该算是最便捷的了: ...

  3. JVM技术部分总结

    1.JVM内存模型 1.1 JVM内存模型图解 Java虚拟机在执行Java程序的过程中,会把它所管理的内存划分为若干个不同的数据区.这些区域有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程 ...

  4. mysql跨服务器查询

    MySQL FEDERATED引擎使用示例, 类似Oracle DBLINK 摘要: 本地MySQL数据库要访问远程MySQL数据库的表中的数据, 必须通过FEDERATED存储引擎来实现. 有点类似 ...

  5. Redis性能调优建议

    一. Redis部署结构优化建议 1. Master不做AOF或RDB持久化,Slave做AOF持久化,建议同时做RDB持久化 2. 所有Master全部增加Slave 3. Master挂载Slav ...

  6. LeetCode Hash Table 3. Longest Substring Without Repeating Characters

    HashMap的应用可以提高查找的速度,键key,值value的使用拜托了传统数组的遍历查找方式,对于判断一个字符或者字符串是否已经存在的问题可以非常好的解决.而本题需要解决的问题就是判断新遍历到的字 ...

  7. GenericServlet 、Servlet和httpServler他们之间的关系

    1.GenericServlet类是所有Servlet类的祖先类. 2.HttpServlet类继承了GenericServlet类. 3.Servlet有两个非常重要的的对象,可以说是java we ...

  8. 规范-Git打标签与版本控制

    Git打标签与版本控制规范 前言 本文适用于使用Git做VCS(版本控制系统)的场景. 用过Git的程序猿,都喜欢其分布式架构带来的commit快感.不用像使用SVN这种集中式版本管理系统,每一次提交 ...

  9. linux下网卡绑定

    网卡绑定的作用:1.冗余,防止单点故障 2.防止传输瓶颈 1.交换机端口绑定: system-view link-aggregation group 1 mode manual 比如把端口1和2进行绑 ...

  10. pooler 连接池中报错" error_no_members"

    连接池驱动,pooler 在使用中会报错" error_no_members" 分析:可能有以下3个地方对其有影响:    1)member 可能没回收: 2)wait_for_p ...