poj2955:Brackets
Brackets
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 8716 | Accepted: 4660 |
Description
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
6
4
0
6
分析
dp[l][r]表示区间[l,r]的答案。
状态转移方程,详见代码
- dp[i][j] = max(dp[i+1][j],dp[i][j-1]);
- if ((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']'))
dp[i][j]=dp[i+1][j-1]+2;- dp[l][r]=max(dp[l][r],dp[l][k]+dp[k+1][r]);
code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
char s[];
int dp[][]; int main()
{
while (scanf("%s",s)!=EOF)
{
memset(dp,,sizeof(dp));
if (s[]=='e') break;
int len = strlen(s);
for (int i=len-; i>=; --i)
{
for (int j=i; j<len; ++j)
{
dp[i][j] = max(dp[i+][j],dp[i][j-]);
if ((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']'))
dp[i][j]=dp[i+][j-]+;
for (int k=i; k<j; ++k)
dp[i][j] = max(dp[i][j],dp[i][k]+dp[k+][j]);
}
}
printf("%d\n",dp[][len-]);
}
return ;
}
poj2955:Brackets的更多相关文章
- POJ2955 Brackets —— 区间DP
题目链接:https://vjudge.net/problem/POJ-2955 Brackets Time Limit: 1000MS Memory Limit: 65536K Total Su ...
- POJ-2955 Brackets(括号匹配问题)
题目链接:http://poj.org/problem?id=2955 这题要求求出一段括号序列的最大括号匹配数量 规则如下: the empty sequence is a regular brac ...
- poj2955 Brackets (区间dp)
题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...
- 间隔DP基础 POJ2955——Brackets
取血怒.first blood,第一区间DP,这样第一次没有以某种方式在不知不觉中下降~~~ 题目尽管是鸟语.但还是非常赤裸裸的告诉我们要求最大的括号匹配数.DP走起~ dp[i][j]表示区间[i, ...
- POJ2955 Brackets(区间DP)
给一个括号序列,求有几个括号是匹配的. dp[i][j]表示序列[i,j]的匹配数 dp[i][j]=dp[i+1][j-1]+2(括号i和括号j匹配) dp[i][j]=max(dp[i][k]+d ...
- POJ2955 Brackets (区间DP)
很好的区间DP题. 需要注意第一种情况不管是否匹配,都要枚举k来更新答案,比如: "()()()":dp[0][5]=dp[1][4]+2=4,枚举k,k=1时,dp[0][1]+ ...
- 各种DP总结
一.数位DP 1.含有或不含某个数“xx”: HDU3555 Bomb HDU2089 不要62 2.满足某些条件,如能整除某个数,或者数位上保持某种特性: HDU3652 B-number Code ...
- [总结-动态规划]经典DP状态设定和转移方程
马上区域赛,发现DP太弱,赶紧复习补上. #普通DP CodeForces-546D Soldier and Number Game 筛法+动态规划 待补 UVALive-8078 Bracket S ...
- POJ2955:Brackets(区间DP)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
随机推荐
- JFrame 文本打印
package tools; import java.awt.BorderLayout; import java.awt.Color; import java.awt.Font; import jav ...
- Apache activiti5.13工作流框架的表结构详解
1.结构设计 1.1. 逻辑结构设计 Activiti使用到的表都是ACT_开头的. ACT_RE_*: ’RE’表示repository(存储),RepositoryService接口所操作的 ...
- win10 asp+access
今天是灰色的一天. 大清早来到单位,告知:单位主页访问不了! 我远程看了下.所有的文件后缀都变成了.crab 赶紧上网查下,哎呀我的妈呀,这是中了勒索病毒啊. 还用查?打开服务器,有个打开的文本文件写 ...
- 解决IE8的兼容问题
本文分享下我在项目中积累的IE8+兼容性问题的解决方法.根据我的实践经验,如果你在写HTML/CSS时候是按照W3C推荐的方式写的,然后下面的几点都关注过,那么基本上很大一部分IE8+兼容性问题都OK ...
- 无法通过CTRL+空格及SHIFT+CTRL调出输入法的解决方案
打开任务管理器: 运行:CTFMON.EXE
- NopCommerce 3.80框架研究(二) MVC 表示层与数据验证
表示层框架结构 /Views/Shared/_Root.Head.cshtml /Views/Shared/_Root.cshtml /Views/Shared/_ColumnsOne.cshtml ...
- linux 命令——28 tar
通过SSH访问服务器,难免会要用到压缩,解压缩,打包,解包等,这时候tar命令就是是必不可少的一个功能强大的工具.linux中最流行的tar是麻雀虽小,五脏俱全,功能强大.tar命令可以为linux的 ...
- echarts 相关属性介绍
title: {//图表标题 x: 'left', //组件离容器左侧的距离,left的值可以是像20,这样的具体像素值, 可以是像 '20%' 这样相对于容器高宽的百分比,也可以是 'lef ...
- 2018.5.25 Oracle相关的函数命令
第03章 函数 1 Oracle的函数 Oracle的函数和java中的方法一样, 能完成一定的功能 2 字符处理类函数 --需求1:把ename字段转换成小写 select lower(ename) ...
- object-detection-crowdai数据处理
import os file=os.listdir('/home/xingyuzhou/object-detection-crowdai') file.sort(key= lambda x:int(x ...