CF750E 线段树+矩阵乘矩阵加
题目描述
A string tt is called nice if a string "2017" occurs in tt as a subsequence but a string "2016" doesn't occur in tt as a subsequence. For example, strings "203434107" and "9220617" are nice, while strings "20016", "1234" and "20167" aren't nice.
The ugliness of a string is the minimum possible number of characters to remove, in order to obtain a nice string. If it's impossible to make a string nice by removing characters, its ugliness is -1−1 .
Limak has a string ss of length nn , with characters indexed 11 through nn . He asks you qq queries. In the ii-th query you should compute and print the ugliness of a substring (continuous subsequence) of ssstarting at the index a_{i}ai and ending at the index b_{i}bi (inclusive).
输入输出格式
输入格式:
The first line of the input contains two integers nn and qq ( 4<=n<=2000004<=n<=200000 , 1<=q<=2000001<=q<=200000 ) — the length of the string ss and the number of queries respectively.
The second line contains a string ss of length nn . Every character is one of digits '0'–'9'.
The ii -th of next qq lines contains two integers a_{i}ai and b_{i}bi ( 1<=a_{i}<=b_{i}<=n1<=ai<=bi<=n ), describing a substring in the ii -th query.
输出格式:
For each query print the ugliness of the given substring.
输入输出样例
8 3
20166766
1 8
1 7
2 8
4
3
-1
15 5
012016662091670
3 4
1 14
4 15
1 13
10 15
-1
2
1
-1
-1
4 2
1234
2 4
1 2
-1
-1
说明
In the first sample:
- In the first query, ugliness(ugliness( "20166766" )=4)=4 because all four sixes must be removed.
- In the second query, ugliness(ugliness( "2016676" )=3)=3 because all three sixes must be removed.
- In the third query, ugliness(ugliness( "0166766" )=-1)=−1 because it's impossible to remove some digits to get a nice string.
In the second sample:
- In the second query, ugliness(ugliness( "01201666209167" )=2)=2 . It's optimal to remove the first digit '2' and the last digit '6', what gives a string "010166620917", which is nice.
- In the third query, ugliness(ugliness( "016662091670" )=1)=1 . It's optimal to remove the last digit '6', what gives a nice string "01666209170".
-------------------------------------------------------------------
这是一个大坑
先把代码丢在这里,改天详细写个题解 233333
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define N 200100
#define INF 1e9
#define lc (p<<1)
#define rc (p<<1|1)
using namespace std;
int n,m;
char s[N];
struct node
{
int a[][];
node(){
for(int i=;i<;i++)
for(int j=;j<;j++)
a[i][j]=INF;
}
}T[N<<];
char ch[]={'','','','',''};
int find (char x)//返回数字本身的愚蠢办法
{
for(int i=;i<;i++)
if(x==ch[i]) return i;
return -;
}
node pushup(node &a,node &b){
node res;
for(int i=;i<;i++)
for(int j=i;j<;j++)
for(int k=i;k<=j;k++)
res.a[i][j]=min(res.a[i][j],a.a[i][k]+b.a[k][j]);
return res;
}
void build(int p,int l,int r)
{
if(l==r)
{
int f=find(s[l]);
for(int i=;i<;i++)
T[p].a[i][i]=;//初始化——隔壁有更好的方法 //以下为转移方程初始化
if(f!=-&&f<)//l的值为2 0 1 7
{
T[p].a[f][f+]=;
T[p].a[f][f]=;
}
else if(f==)//l为6
T[p].a[][]=T[p].a[][]=;
return;
}
int mid=(l+r)>>;
build(lc,l,mid);
build(rc,mid+,r);
T[p]=pushup(T[lc],T[rc]);
}
node query(int p,int l,int r,int ql,int qr)
{
if(ql==l&&qr==r)
return T[p];
int mid=(l+r)>>;
if(qr<=mid) return query(lc,l,mid,ql,qr);
if(ql>mid) return query(rc,mid+,r,ql,qr);
else
{
node tmpl=query(lc,l,mid,ql,mid);
node tmpr=query(rc,mid+,r,mid+,qr);
return pushup(tmpl,tmpr);
}
}
int main()
{
scanf("%d%d",&n,&m);
scanf("%s",s+);
build(,,n);
while(m--)
{
int l,r;
scanf("%d%d",&l,&r);
int ans=query(,,n,l,r).a[][];
if(ans==INF) printf("-1\n");
else printf("%d\n",ans);
}
return ;
}
CF750E 线段树+矩阵乘矩阵加的更多相关文章
- 「模板」 线段树——区间乘 && 区间加 && 区间求和
「模板」 线段树--区间乘 && 区间加 && 区间求和 原来的代码太恶心了,重贴一遍. #include <cstdio> int n,m; long l ...
- UOJ#299. 【CTSC2017】游戏 线段树 概率期望 矩阵
原文链接www.cnblogs.com/zhouzhendong/p/UOJ299.html 前言 不会概率题的菜鸡博主做了一道概率题. 写完发现运行效率榜上的人都没有用心卡常数——矩阵怎么可以用数组 ...
- ZOJ - 2671 Cryptography(线段树+求区间矩阵乘积)
题意:已知n个矩阵(下标从1开始),求下标x~y区间矩阵的乘积.最多m次询问,n ( 1 <= n <= 30,000) and m ( 1 <= m <= 30,000). ...
- poj 3468 A Simple Problem with Integers (线段树 成段更新 加值 求和)
题目链接 题意: 只有这两种操作 C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.&quo ...
- POJ 3468 A Simple Problem with Integers(线段树功能:区间加减区间求和)
题目链接:http://poj.org/problem?id=3468 A Simple Problem with Integers Time Limit: 5000MS Memory Limit ...
- hdu 5068 线段树维护矩阵乘积
http://acm.hdu.edu.cn/showproblem.php?pid=5068 题意给的略不清晰 m个询问:从i层去j层的方法数(求连段乘积)或者修改从x层y门和x+1层z门的状态反转( ...
- Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并
D. Vika and Segments Vika has an infinite sheet of squared paper. Initially all squares are whit ...
- BZOJ 4085 丧心病狂的毒瘤题目 线段树+矩乘
思路: 一眼矩阵快速幂 再用线段树维护一下矩阵就完了... 我hhhhh 哎我还是too young,too simple 入了这个大坑 线段树维护9个值 以上 如果A+1 转移矩阵是这个样 ...
- bzoj1018[SHOI2008]堵塞的交通traffic——线段树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1018 巧妙的线段树.维护矩阵四个角的连通性. 考虑两个点连通的可能路径分成3部分:两点左边. ...
随机推荐
- 小目标 | DAX高级实践-Power BI与Excel联合应用
· 适用人群:数据分析专业人士,在数据分析方向需求发展人士 · 应用场景:数据汇报.数据可视化展现.数据建模分析 · 掌握难度:★★★★☆ 本期讲师 DAX高级实践-Power BI与Excel联合应 ...
- 一键部署joomla开源内容管理平台
https://market.azure.cn/Vhd/Show?vhdId=10896&version=12949 产品详情 产品介绍Joomla是一套自由.开放源代码的内容管理系统,以PH ...
- 一键部署基于GitLab的自托管Git项目仓库
https://market.azure.cn/Vhd/Show?vhdId=9851&version=11921 产品详情 产品介绍GitLab https://about.gitlab.c ...
- HTML_3
html列表 有序列表:在网页上定义一个有编号的内容列表可以用<ol>.<li>配合使用来实现,在网页上生成的列表,每条项目上按1.2.3编号,有序列表在实际开发中较少使用.代 ...
- Centos7.3 安装devstack stein版本
1. 系统准备 # 关闭防火墙 systemctl stop firewalld systemctl disable firewalld # 关闭selinux setenforce 0 sed -i ...
- 安装JDK1.8以及配置环境变量的步骤
一. 首先到官网下载jdk1.8,下载的版本分为windows和linux,这里需要安装操作系统进行下载.我的是64位就下载x64,32位系统则下载x86 二. 然后就是安装,双击进行安装,这里不用更 ...
- Ubuntu编译Android源码过程中的空间不足解决方法
Android源码一般几十G,就拿Android5.0来说,下载下来大概也有44G左右,和编译产生的文件以及Ubuntu系统占用的空间加起来,源码双倍的空间都不够有.编译源码前能分配足够的空间再好不过 ...
- POP简单动画简单使用 (入门级别)
动画可以让APP“更友好”的与用户交互,苹果提供很多的好看的动画供开发者使用,不过简单的平移.旋转.缩放.......使用起来很简单,但是想要进行一些比较复杂的动画效果,使用起来就比较难以实现,俗话说 ...
- OpenCV3.42+VS2017配置+模块计算机类型“X86”与目标计算机类型“x64”冲突”的问题解决
目录 OpenCV3.42+VS2017配置 Visual Studio 2017 第三方依赖设置,附加依赖项和附加库目录 "fatal error LNK1112: 模块计算机类型&quo ...
- 机器学习(一)之KNN算法
knn算法原理 ①.计算机将计算所有的点和该点的距离 ②.选出最近的k个点 ③.比较在选择的几个点中那个类的个数多就将该点分到那个类中 KNN算法的特点: knn算法的优点:精度高,对异常值不敏感,无 ...