本章介绍了不同场景下使用的线性回归方法

一般情况:简单的线性回归

欠拟合:局部加权线性回归

特征数大于样本数:岭回归 或 lasso法

最后引出交叉验证,用来定量地找到最佳参数值

 # _*_ coding:utf-8_*_

 # 8-1 标准回归函数和数据导入函数
from numpy import *
# 将数据格式化
def loadDataSet(fileName):
numFeat = len(open(fileName).readlines()[0].split('\t')) - 1
dataMat = []
labelMat = []
fr = open(fileName)
for line in fr.readlines():
lineArr = []
curLine = line.strip().split('\t')
for i in range(numFeat): # float()不能将整个list中的元素进行类型转换,所以用一个循环,一个元素一个元素地转换
lineArr.append(float(curLine[i]))
dataMat.append(lineArr)
labelMat.append(float(curLine[-1]))
return dataMat, labelMat # 计算系数向量w的最佳估计,其中要求xTx的逆,所以先要判断它是否为满秩矩阵(行列式不为0),
# 若否,则不能进一步计算。这里并没有提供伪逆矩阵的做法
def standRegres(xArr, yArr): # 矩阵相乘要把结构改成matrix,否则array的*只能对元素进项相乘
xMat = mat(xArr)
yMat = mat(yArr).T
xTx = xMat.T * xMat
if linalg.det(xTx) == 0.0: # numpy提供了一个线性代数库linalg(linear algebra),
# 其中包含计算行列式(determinant)的方法det(),
# 为什么可以用==比较浮点数?????????????
print "This matrix is singular, cannot do inverse"
return
ws = xTx.I * (xMat.T * yMat)
return ws # 效果 xArr,yArr = loadDataSet('ex0.txt')
print xArr[0:2] ws = standRegres(xArr,yArr) xMat=mat(xArr)
yMat=mat(yArr)
yHat=xMat*ws #y的预测值 import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xMat[:,1].flatten().A[0],yMat.T[:,0].flatten().A[0],10) # flatten()方法能将matrix的元素变成一维的,
# .A能使matrix变成array .A[0]能少一个[] 虽然我不明白到底什么意思,以后注意一下
# 另外,为什么前两个参数需要转变成array?明明matrix也能画出来
print (corrcoef(yHat.T, yMat)) xCopy = xMat.copy()
xCopy.sort(0)
yHat = xCopy *ws
ax.plot(xCopy[:,1],yHat,'red') plt.show() # 8-2 局部加权线性回归函数
def lwlr(testPoint, xArr, yArr, k=1.0): # 参数k控制衰减速度; testPoint为输入,函数返回根据加权线性回归得出的预测值
xMat = mat(xArr)
yMat = mat(yArr).T
m = shape(xMat)[0]
weights = mat(eye(m))
for j in range(m):
diffMat = testPoint - xMat[j,:]
weights[j,j] = exp(diffMat*diffMat.T/(-2.0*k**2))
xTx = xMat.T*(weights*xMat)
if linalg.det(xTx) == 0.0:
print "this matrix is singular, cannot do inverse"
return
ws = xTx.I*(xMat.T*(weights*yMat))
return testPoint * ws def lwlrTest(testArr, xArr, yArr, k=1.0):
m = shape(testArr)[0]
yHat = zeros(m)
for i in range(m):
yHat[i] = lwlr(testArr[i], xArr, yArr, k)
return yHat xArr,yArr = loadDataSet('ex0.txt')
yHat = lwlrTest(xArr, xArr, yArr, 0.01)
xMat = mat(xArr)
srtInd = xMat[:,1].argsort(0) # argsort()方法返回的是排序后个元素排序前的下标
xSort = xMat[srtInd][:,0,:] # 这个功能看懂了 但是语法没搞懂??????? import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(xSort[:,1], yHat[srtInd])
ax.scatter(xMat[:,1].flatten().A[0], mat(yArr).T.flatten().A[0], s=2, c='red')
plt.show() # 8-3 岭回归(xTx肯定不是满秩矩阵,加上一个lam*I使其变为满秩的,I是单位矩阵) def ridgeRegres(xMat, yMat, lam=0.2):
xTx = xMat.T * xMat
denom = xTx+lam*eye(len(xTx[0]))
if linalg.det(denom) == 0.0:
print "this matrix is not singular, cannot do inverse"
return
ws = denom.I * (xMat.T*yMat)
return ws # 先对特征进行标准化处理,是每维特征具有相同重要性,这里的做法是所有特征减去各自的均值并处理方差
def ridgeTest(xArr, yArr):
xMat = mat(xArr)
yMat = mat(yArr).T
yMean = mean(yMat,0)
yMat = yMat - yMean
xMeans = mean(xMat,0)
xVar = var(xMat, 0)
xMat = (xMat - xMeans)/xVar
numTestPts = 30 # 在30个不同的lambda下调用ridgeRegres()函数
wMat = zeros((numTestPts, shape(xMat)[1]))
for i in range(numTestPts):
ws = ridgeRegres(xMat, yMat, exp(i-10)) # lambda以指数级变化,这样能看出lambda在去非常小的值时和取非常大的值时对结果造成的影响
wMat[i,:]=ws.T
return wMat # 8-4 前向逐步线性回归 # 标准化特征(书上漏了这部分)
def regularize(xMat):
inMat = xMat.copy()
inMeans = mean(inMat,0)
inVar = var(inMat,0)
inMat = (inMat - inMeans)/inVar
return inMat def rssError(yArr, yHatArr):
return ((yArr-yHatArr)**2).sum() # 对每个特征,将他的系数从一个初始值开始以特定步长增大或减少,一旦误差变小就用lowestError来记录最小误差,用wsMax来记录最优权重。
def stageWise(xArr, yArr, eps=0.01, numIt=100): # eps表示每次迭代需要调整的步长
xMat = mat(xArr)
yMat = mat(yArr).T
yMean = mean(yMat,0)
yMat = yMat - yMean
xMat = regularize(xMat)
m,n = shape(xMat)
returnMat = zeros((numIt,n))
ws = zeros((n,1))
wsTest = ws.copy()
wsMax = ws.copy()
for i in range(numIt):
print ws.T
lowestError = inf
for j in range(n):
for sign in [-1,1]:
wsTest = ws.copy()
wsTest[j] += eps*sign
yTest = xMat * wsTest
rssE = rssError(yMat.A, yTest.A)
if rssE < lowestError:
lowestError = rssE
wsMax = wsTest
ws =wsMax.copy()
returnMat[i,:] = ws.T
return returnMat

《机器学习实战》笔记——regression的更多相关文章

  1. 机器学习实战笔记-k-近邻算法

    机器学习实战笔记-k-近邻算法 目录 1. k-近邻算法概述 2. 示例:使用k-近邻算法改进约会网站的配对效果 3. 示例:手写识别系统 4. 小结 本章介绍了<机器学习实战>这本书中的 ...

  2. 机器学习实战笔记(Python实现)-08-线性回归

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  3. 机器学习实战笔记(Python实现)-09-树回归

    ---------------------------------------------------------------------------------------- 本系列文章为<机 ...

  4. 机器学习实战笔记(Python实现)-06-AdaBoost

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  5. 机器学习实战笔记(Python实现)-05-支持向量机(SVM)

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  6. 机器学习实战笔记(Python实现)-04-Logistic回归

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  7. 机器学习实战笔记(Python实现)-03-朴素贝叶斯

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  8. 机器学习实战笔记(Python实现)-01-K近邻算法(KNN)

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  9. 机器学习实战笔记(Python实现)-02-决策树

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  10. 机器学习实战笔记(Python实现)-00-readme

    近期学习机器学习,找到一本不错的教材<机器学习实战>.特此做这份学习笔记,以供日后翻阅. 机器学习算法分为有监督学习和无监督学习.这本书前两部分介绍的是有监督学习,第三部分介绍的是无监督学 ...

随机推荐

  1. python发送邮件 示例

    示例1 import smtplib from email.mime.text import MIMEText from email.header import Header def sedmail( ...

  2. python基础一 day14 生成器函数进阶(1)

  3. eclipse报错GC overhead limit exceed,卡顿

    在使用Eclipse的Build Project功能时,提示以下错误: An internal error occurred during: “Build Project”. GC overhead ...

  4. Launch Instance---source for openstack

    If you want to create an instance that uses ephemeral storage, meaning the instance data is lost whe ...

  5. lua拷贝二进制文件的方法

    使用lua拷贝二进制文件相比文本文件复杂一点,方法如下 function copyFunc(targetPath,sourcePath) local rf = io.open(sourcePath,& ...

  6. JS数据结构与算法--双向链表

    双向链表中链接是双向的:一个链向下一个元素,另一个链向上一个元素,如下图所示: 双向链表结构代码如下: class Node { constructor(element) { this.element ...

  7. JQuery图片轮播实例

    HTML+CSS代码: <!doctype html> <html> <head> <meta charset="utf-8"> & ...

  8. LNMP的环境搭建

    新装的Linux 机器,还没有来得及安装网站环境,这篇文章就是记录一下自己安装LNMP的一般步骤. 之前在Laravel视频中看过这段的讲解,后来也试着安装过,基本的命令不算是熟练掌握,所以还要看看之 ...

  9. Powershell 备忘

    如何修改环境变量 [environment]::SetEnvironmentvariable(“path”,"xxx","user") [environment ...

  10. destoon 屏蔽会员组,让个人,游客不显示

    include/post.fun.php  文件的group_select函数增加 排除参数 except function group_select($name = 'groupid', $titl ...