51nod1639(组合数学)
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1639
题意:中文题诶~
思路:组合数学
n根鞋带要组成一个环,那么显然与连成一根鞋带之前不成环是冲要条件;
假设当前还剩下 i (i>1) 根鞋带,要从中选择两根鞋带头连接后不成环的概率为 pi = 不成环的选择方法数 / 所有选择方法数
所有方法数 = C(2*i, 2) = 2 * i * (2*i - 1) / 2 = i * (2*i - 1)
成环的方法数 = C(i, 1) = i
不成环的方法数 = 所有方法数 - 成环方法数 = i * (2*i - 2)
所以 pi = 不成环的选择方法数 / 所有选择方法数 = (2*i - 2) / (2*i - 1)
由此得到了i > 1时的 pi;
对于每一个 i 的情况都可以看作是相互独立的事件,那么显然有 p = ∑pi = ∑(2*i - 2) / (2*i - 1) (2 =< i <= n);
代码:
#include <iostream>
#include <stdio.h>
using namespace std; int main(void){
int n;
double p=;
scanf("%d", &n);
for(int i=n; i>; i--){
p*=(double)(*i-)/(*i-);
}
printf("%.6lf\n", p);
return ;
}
51nod1639(组合数学)的更多相关文章
- poj 3734 Blocks 快速幂+费马小定理+组合数学
题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...
- 组合数学or not ---- n选k有重
模板问题: 1. 取物品 (comb.pas/c/cpp) [问题描述] 现在有n个物品(有可能相同),请您编程计算从中取k个有多少种不同的取法.[输入] 输入文件有两行,第一行包含两个整数n,k(2 ...
- 组合数学(全排列)+DFS CSU 1563 Lexicography
题目传送门 /* 题意:求第K个全排列 组合数学:首先,使用next_permutation 函数会超时,思路应该转变, 摘抄网上的解法如下: 假设第一位是a,不论a是什么数,axxxxxxxx一共有 ...
- uestc1888 Birthday Party 组合数学,乘法原理
题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=25539#problem/G 题目意思: 有n个人,每个人有一个礼物,每个人能拿 ...
- UVA 11076 Add Again 计算对答案的贡献+组合数学
A pair of numbers has a unique LCM but a single number can be the LCM of more than one possiblepairs ...
- POJ3252——Round Number(组合数学)
Round Numbers DescriptionThe cows, as you know, have no fingers or thumbs and thus are unable to pla ...
- HDU4675【GCD of scequence】【组合数学、费马小定理、取模】
看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p ...
- hdu 4810 Wall Painting (组合数学+二进制)
题目链接 下午比赛的时候没有想出来,其实就是int型的数分为30个位,然后按照位来排列枚举. 题意:求n个数里面,取i个数异或的所有组合的和,i取1~n 分析: 将n个数拆成30位2进制,由于每个二进 ...
- CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)
问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...
随机推荐
- 开启kbmmw 5.09 中的XML-RPC和 JSON-RPC 服务
kbmmw 5.09 里面增加了XML-RPC和 JSON-RPC 服务支持,但是默认没有开启. 需要在安装前,修改kbmMWConfig.inc文件. 加入以下定义 {$DEFINE KBMMW_J ...
- 51NOD 1810 连续区间 分治 区间计数
1810 连续区间 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 80 区间内所有元素排序后,任意相邻两个元素值差为1的区间称为“连续区间” 如:3,1,2是连续区间,但3, ...
- HLS切片机
参考: 1,linux下搭建生成HLS所需的.ts和.m3u8文件http://www.cnblogs.com/mystory/archive/2013/04/07/3006200.html2,iPh ...
- ThinkPHP使用方法与心得
ThinkPHP相信PHP程序员对它并不陌生,通过自己的学习在此发表个人看法,也为以后自己查找ThinkPHP方面的知识更加方便. 一.mvc及数据库CURD操作流程: 1.新建数据库:数据库名称:1 ...
- codeforces 715c
题目大意:给定一个有N个点的树,问其中有多少条路径满足他们的边权连成的数对M取余为0.其中gcd(M,10)=1. 题解: 很亲民的点分治题目,对每一层点分治,预处理每个点到当前根的数字并对m取余,和 ...
- 记录下 hubot相关
适配器工厂https://hubot.github.com/docs/adapters/ 自己写适配器https://hubot.github.com/docs/adapters/developmen ...
- linux系统配置之服务程序的开机自启动(centos)
CentOS安装好apache.mysql等服务器程序后,并没有设置成开机自动启动的,为避免重启后还要手动开启web等服务器,还是做下设置好,其实设置很简单,用chkconfig命令就行了. 例如,要 ...
- 201621123007 Java程序设计第一周 学习总结
第一周-Java基本概念 201621123007 <Java程序设计> 第一周学习总结 1. 本周学习总结 java是面向对象的一类语言,三大特征:封装性,继承性,多态性. jdk jr ...
- bootstrap 学习笔记(4)---- 按钮
平常我们自己写按钮,这次不用我们自己写 了,直接应用bootstrap中的按钮样式,就能设计出很漂亮的按钮样式.接下来就让我们一起学习吧. 1.可以作为按钮使用的标签或元素:<a>< ...
- SNMP:简单网络管理协议
基于 TCP/IP 的网络管理包括两部分:网络管理站 (manager) 和被管理的网络单元(被管设备).这些被管设备的共同点就是都运行 TCP/IP 协议.管理进程和代理进程之间的通信有两种方式,一 ...