【BZOJ4555】【TJOI2016】【HEOI2016】求和 (第二类斯特林数+NTT卷积)
Description
在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心。
现在他想计算这样一个函数的值:
$$f(n)=\sum_{i=0}^n\sum_{j=0}^i S(i,j)\times 2^j\times(j!)$$
$S(i,j)$表示第二类斯特林数,递推公式为:
$S(i,j)=j\times S(i-1,j)+S(i-1,j-1),1\leq j\leq i-1$。
边界条件为:$S(i,i)=1(0\leq i),S(i,0)=0(1\leq i)$
你能帮帮他吗?
Input
Output
输出$f(n)$。
由于结果会很大,输出$f(n)$对$998244353(7×17×223+1)$取模的结果即可。
题解:
递推式给你就是玩你的,一点关系都没有!
第二类斯特林数通项公式:
$$S(i,j)=\frac{1}{j!}\sum_{k=0}^j(-1)^k C_j^k(j-k)^i$$
代入原式得
$$\sum_{i=0}^n\sum_{j=0}^i \frac{1}{j!}\sum_{k=0}^j(-1)^k C_j^k(j-k)^i\times 2^j\times(j!)$$
组合数展开得
$$\sum_{i=0}^n\sum_{j=0}^i 2^j\sum_{k=0}^j(-1)^k\frac{j!}{k!(j-k)!}(j-k)^i$$
交换枚举顺序得
$$\sum_{j=0}^n(j!)2^j\sum_{k=0}^n{(-1)^k\over k!}{1\over (j-k)!}\sum_{i=0}^n(j-k)^i$$
看到又有$k$又有$j-k$,这不是卷积吗?
令 $a(x)=\sum_{x=0}^n{(-1)^x\over x!}$
$b(x)={1\over (x)!}\sum_{i=0}^n(x)^i$
则 $f(x)=(x!)2^x\sum_{i=0}^n a(x)b(x-i)$
不过循环边界到n不会越界吗?这对答案没有影响,因为斯特林数和组合数都为0。
那就直接NTT了,刚好给了一个NTT模数。(这莫非是提示?)
CODE:
#include<iostream>
#include<cstdio>
using namespace std; #define mod 998244353
int n,bit=,rev[],ans=;
long long fac[],inv[],ivf[];
long long a[],b[]; int qpow(int x,int y){
int ans=;
while(y){
if(y&)ans=1LL*ans*x%mod;
y>>=,x=1LL*x*x%mod;
}
return ans;
} void init(){
fac[]=ivf[]=inv[]=inv[]=;
for(int i=;i<=n;i++)fac[i]=fac[i-]*i%mod;
for(int i=;i<=n;i++)inv[i]=(mod-mod/i)*inv[mod%i]%mod;
for(int i=;i<=n;i++)ivf[i]=ivf[i-]*inv[i]%mod;
a[]=b[]=;
for(int i=,f=-;i<=n;i++,f=-f){
if (i==)a[i]=n+;
else a[i]=ivf[i]*(qpow(i,n+)-)%mod*inv[i-]%mod;
b[i]=f*ivf[i]%mod;
if(a[i]<)a[i]+=mod;
if(b[i]<)b[i]+=mod;
}
} void get_rev(){
while(bit<=n+n)bit<<=;
for(int i=;i<bit;i++)
rev[i]=(rev[i>>]>>)|(i&)*(bit>>);
} void NTT(long long a[],int dft){
for(int i=;i<bit;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int i=;i<bit;i<<=){
long long W=qpow(,(mod-)/i/);
if(dft==-)W=qpow(W,mod-);
for(int j=;j<bit;j+=i<<){
long long w=;
for(int k=j;k<i+j;k++,w=w*W%mod){
long long x=a[k];
long long y=w*a[k+i]%mod;
a[k]=(x+y)%mod,a[k+i]=(x+mod-y)%mod;
}
}
}
int inv=qpow(bit,mod-);
if(dft==-)for(int i=;i<bit;i++)a[i]=a[i]*inv%mod;
} int main(){
scanf("%d",&n);
init();
get_rev();
NTT(a,),NTT(b,);
for(int i=;i<bit;i++)(a[i]*=b[i])%=mod;
NTT(a,-);
for(int i=;i<=n;i++){
ans+=qpow(,i)*fac[i]%mod*a[i]%mod;
if(ans>=mod)ans-=mod;
}
printf("%d",ans);
}
【BZOJ4555】【TJOI2016】【HEOI2016】求和 (第二类斯特林数+NTT卷积)的更多相关文章
- bzoj 4555 [Tjoi2016&Heoi2016] 求和 —— 第二类斯特林数+NTT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 关于第二类斯特林数:https://www.cnblogs.com/Wuweizhen ...
- BZOJ 4555:[TJOI2016&HEOI2016]求和(第二类斯特林数+NTT)
题目链接 \(Description\) 求 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)2^jj!\]对998244353取模后的结果. \(n<=10^5\) \(Sol ...
- 【BZOJ4555】【TJOI2016】【HEOI2016】求和 第二类斯特林数 NTT
题目大意 求\(f(n)=\sum_{i=0}^n\sum_{j=0}^i2^j\times j!\times S(i,j)\\\) 对\(998244353\)取模 \(n\leq 100000\) ...
- BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】
题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + ...
- P4091 [HEOI2016/TJOI2016]求和(第二类斯特林数+NTT)
传送门 首先,因为在\(j>i\)的时候有\(S(i,j)=0\),所以原式可以写成\[Ans=\sum_{i=0}^n\sum_{j=0}^nS(i,j)\times 2^j\times j! ...
- BZOJ5093 [Lydsy1711月赛]图的价值 【第二类斯特林数 + NTT】
题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 ...
- bzoj 5093 图的价值 —— 第二类斯特林数+NTT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 每个点都是等价的,从点的贡献来看,得到式子: \( ans = n * \sum\li ...
- bzoj5093:图的价值(第二类斯特林数+NTT)
传送门 首先,题目所求为\[n\times 2^{C_{n-1}^2}\sum_{i=0}^{n-1}C_{n-1}^ii^k\] 即对于每个点\(i\),枚举它的度数,然后计算方案.因为有\(n\) ...
- BZOJ 5093: [Lydsy1711月赛]图的价值 第二类斯特林数+NTT
定义有向图的价值为图中每一个点的度数的 \(k\) 次方之和. 求:对于 \(n\) 个点的无向图所有可能情况的图的价值之和. 遇到这种题,八成是每个点单独算贡献,然后累加起来. 我们可以枚举一个点的 ...
随机推荐
- python报错UnicodeDecodeError:
Python 里面的编码和解码也就是 unicode 和 str 这两种形式的相互转化.编码是 unicode -> str,相反的,解码就 是 str -> unicode.剩下的问题就 ...
- 03_5_static关键字
03_5_static关键字 1. static关键字 在类中,用static声明的成员变量为静态成员变量,它为该类的公用 变量,在第一次使用时被初始化,对于该类的所有对象来说,static成员变量只 ...
- CentOS 编译安装PHP5.6(7以上也通用)
由于公司有新服务器需要构建一套LNMP平台,且需要编译安装各个部件,所以记录下此文章. 这是安装PHP涉及到的软件包(可以自行决定使用哪个版本): ├── libiconv-1.15.tar.gz ├ ...
- Unity基础-发布
PC BuildSetting File->BuildSetting Switch Platform Development Build是在调试模式下使用版本 Script Debugging调 ...
- Voyager如何使用Compass
Compass由Resources,Commands,Logs三个部分组成 Resources包含了Links和Fonts: Commands可以执行php命令,比如创建model: 创建一个Down ...
- ESP8266入门学习笔记1:资料获取
乐鑫官网:https://www.espressif.com/zh-hans/products/hardware/esp8266ex/overview 乐鑫资料:https://www.espress ...
- Applied Nonparametric Statistics-lec2
Ref: https://onlinecourses.science.psu.edu/stat464/print/book/export/html/3 The Binomial Distributio ...
- POJ:2411-Mondriaan's Dream(矩形拼接方案)
题目链接:http://poj.org/problem?id=2411 解题心得: 可以说是很经典的一个状压dp了,写dfs遍历肯定是要超时的,这个题的状态转移方程对新手来说有点吃力. 状态转移用的是 ...
- POJ:2109-Power of Cryptography(关于double的误差)
Power of Cryptography Time Limit: 1000MS Memory Limit: 30000K Description Current work in cryptograp ...
- ACM Changchun 2015 L . House Building
Have you ever played the video game Minecraft? This game has been one of the world's most popular ga ...