A - Solve equation

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Submit Status
Appoint description: 
System Crawler  (2014-03-17)

Description

You are given two positive integers A and B in Base C. For the equation:

A=k*B+d

We know there always existing many non-negative pairs (k, d) that satisfy the equation above. Now in this problem, we want to maximize k.

For example, A="123" and B="100", C=10. So both A and B are in Base 10. Then we have:

(1) A=0*B+123

(2) A=1*B+23

As we want to maximize k, we finally get one solution: (1, 23)

The range of C is between 2 and 16, and we use 'a', 'b', 'c', 'd', 'e', 'f' to represent 10, 11, 12, 13, 14, 15, respectively.

Input

The first line of the input contains an integer T (T≤10), indicating the number of test cases.

Then T cases, for any case, only 3 positive integers A, B and C (2≤C≤16) in a single line. You can assume that in Base 10, both A and B is less than 2^31.

Output

For each test case, output the solution “(k,d)” to the equation in Base 10.

Sample Input

3
2bc 33f 16
123 100 10
1 1 2

Sample Output

(0,700)
(1,23)
(1,0)
分析:给两个整数A、B(C进制),根据公式A=k*B+d;求k,d>=0时k最大时的一组解。如果A<B,那么答案是(0,A)。如果A>=B,那么答案是((int)A/B,A%B)。
#include<iostream>
#include<cstdio>
#include<string>
#include<cmath>
using namespace std; __int64 get_num(char *s,int c)
{
int i,n=strlen(s)-;
__int64 num=;
for(i=n;i>=;i--)
{
if(''<=s[i] && s[i]<='') num+=(int)pow(c*1.0,(n-i)*1.0)*(s[i]-'');
else num+=(int)pow(c*1.0,(n-i)*1.0)*(s[i]-'a'+);
}
return num;
} int main()
{
int T,C;
__int64 A,B;
char s1[],s2[];
scanf("%d",&T);
while(T--)
{
scanf("%s %s %d",s1,s2,&C);
A=get_num(s1,C);
B=get_num(s2,C);
if(A<B)
{
printf("(0,%I64d)\n",A);
}
else printf("(%I64d,%I64d)\n",A/B,A%B);
}
return ;
}

B - Bin &amp; Jing in wonderland

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Submit Status
Appoint description: 
System Crawler  (2014-03-02)

Description

Bin has a dream that he and Jing are both in a wonderland full of beautiful gifts. Bin wants to choose some gifts for Jing to get in her good graces.

There are N different gifts in the wonderland, with ID from 1 to N, and all kinds of these gifts have infinite duplicates. Each time, Bin shouts loudly, “I love Jing”, and then the wonderland random drop a gift in front of Bin. The dropping probability for gift i (1≤i≤N) is P(i). Of cause, P(1)+P(2)+…+P(N)=1. Bin finds that the gifts with the higher ID are better. Bin shouts k times and selects r best gifts finally.

That is, firstly Bin gets k gifts, then sorts all these gifts according to their ID, and picks up the largest r gifts at last. Now, if given the final list of the r largest gifts, can you help Bin find out the probability of the list?

Input

The first line of the input contains an integer T (T≤2,000), indicating number of test cases.

For each test cast, the first line contains 3 integers N, k and r (1≤N≤20, 1≤k≤52, 1≤r≤min(k,25)) as the description above. In the second line, there are N positive float numbers indicates the probability of each gift. There are at most 3 digits after the decimal point. The third line has r integers ranging from 1 to N indicates the finally list of the r best gifts’ ID.

Output

For each case, output a float number with 6 digits after the decimal points, which indicates the probability of the final list.

Sample Input

4
2 3 3
0.3 0.7
1 1 1
2 3 3
0.3 0.7
1 1 2
2 3 3
0.3 0.7
1 2 2
2 3 3
0.3 0.7
2 2 2

Sample Output

0.027000
0.189000
0.441000
0.343000

题目大意:有N种礼物,每喊一次掉下一个礼物,每个礼物掉下来的概率为pi,呼喊k次,只选取r个编号较大的礼物。

分析:根据排列组合来计算概率,设编号ai有ni个,由于k可能大于r,根据乘法原理它概率分两部分:

第一部分:r个中最小编号(minn)外的概率Power(p[i],m[i])*C(m[i],r)*Power(p[i+1],m[i+1])*C(m[i+1],r-m[i])....;

第二部分:k-r个礼物,有多种情况(最小编号的个数(0,k-r))。可以把小于最小编号的看成一个种礼物(p=sum{pi,i<minn}),根据加法原理计算。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<map>
using namespace std; int N,K,R;
double p[]; inline int min(int a,int b){ return a<b?a:b;} double Power(double a,int b)
{
double ret=;
while(b)
{
if(b&) ret=ret*a;
a=a*a;
b>>=;
}
return ret;
} __int64 C(int k,int n)
{
int i;
__int64 ans=;
for ( i = ; i <=k ; i++)
{
ans*= (n-i+);
ans/=i;
}
return ans;
} int main()
{
int T,i,temp,Min,kk,rt;
double Minp,ans,tp;
map<int,int> m;
scanf("%d",&T);
while(T--)
{
m.clear();
Min=;Minp=;ans=1.0;
scanf("%d %d %d",&N,&K,&R);
kk=K;
for(i=;i<=N;i++) scanf("%lf",p+i);
for(i=;i<=R;i++){ scanf("%d",&temp);m[temp]++;Min=min(Min,temp);}
for(i=;i<Min;i++) Minp+=p[i];
for(i=Min+;i<=N;i++)
{
if(m[i]>)
{
ans*=Power(p[i],m[i])*C(m[i],kk);
kk=kk-m[i];
}
}
tp=;
for(i=;i<=K-R; i++)
{
rt=K-R-i;
tp+=((Power(p[Min],m[Min]+i)*C(m[Min]+i,K-R+m[Min])) * Power(Minp,rt));
}
ans*=tp;
printf("%.6lf\n",ans);
}
return ;
}
C - Floor problem

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Submit Status
Appoint description: 
System Crawler  (2012-12-11)

Description

In this problem, we have f(n,x)=Floor[n/x]. Here Floor[x] is the biggest integer such that no larger than x. For example, Floor[1.1]=Floor[1.9]=1, Floor[2.0]=2.

You are given 3 positive integers n, L and R. Print the result of f(n,L)+f(n,L+1)+...+f(n,R), please.

Input

The first line of the input contains an integer T (T≤100), indicating the number of test cases.

Then T cases, for any case, only 3 integers n, L and R (1≤n, L, R≤10,000, L≤R).

Output

For each test case, print the result of f(n,L)+f(n,L+1)+...+f(n,R) in a single line.

Sample Input

3
1 2 3
100 2 100
100 3 100

Sample Output

0
382
332

#include<stdio.h>

int main()
{
int n,l,r,t;
int sum;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&l,&r);
sum = ;
for(int i =l;i<=r;i++)
{
sum +=(int)(n/i*1.0);
}
printf("%d\n",sum);
}
return ;
}
D - Digits Count

Time Limit:10000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Submit Status
Appoint description: 
System Crawler  (2012-12-11)

Description

Given N integers A={A[0],A[1],...,A[N-1]}. Here we have some operations:

Operation 1: AND opn L R

Here opn, L and R are integers.

For L≤i≤R, we do A[i]=A[i] AND opn (here "AND" is bitwise operation).

Operation 2: OR opn L R

Here opn, L and R are integers.

For L≤i≤R, we do A[i]=A[i] OR opn (here "OR" is bitwise operation).

Operation 3: XOR opn L R

Here opn, L and R are integers.

For L≤i≤R, we do A[i]=A[i] XOR opn (here "XOR" is bitwise operation).

Operation 4: SUM L R

We want to know the result of A[L]+A[L+1]+...+A[R].

Now can you solve this easy problem?

Input

The first line of the input contains an integer T, indicating the number of test cases. (T≤100)

Then T cases, for any case, the first line has two integers n and m (1≤n≤1,000,000, 1≤m≤100,000), indicating the number of elements in A and the number of operations.

Then one line follows n integers A[0], A[1], ..., A[n-1] (0≤A[i]<16,0≤i<n).

Then m lines, each line must be one of the 4 operations above. (0≤opn≤15)

Output

For each test case and for each "SUM" operation, please output the result with a single line.

Sample Input

1
4 4
1 2 4 7
SUM 0 2
XOR 5 0 0
OR 6 0 3
SUM 0 2

Sample Output

7
18

Hint

A = [1 2 4 7]

SUM 0 2, result=1+2+4=7;

XOR 5 0 0, A=[4 2 4 7];

OR 6 0 3, A=[6 6 6 7];

SUM 0 2, result=6+6+6=18.

//;Write by lk1993, 2014.3.23
#include <stdio.h>
#include <string.h> const int M = + ; int sum[M]; inline void pushDown(int rt)
{
if(sum[rt] >= )
{
sum[rt << ] = sum[rt << | ] = sum[rt];
sum[rt] = -;
}
} inline void pushUp(int rt)
{
if(sum[rt << ] != - && sum[rt << | ] != - && sum[rt << ] == sum[rt << | ])
{
sum[rt] = sum[rt << ];
}
} void build(int l, int r, int rt)
{
if(l == r)
{
scanf("%d", &sum[rt]);
return ;
}
int m = (l + r) >> ;
build(l, m, rt << );
build(m + , r, rt << | );
pushUp(rt);
} void update(char op, int val, int ul, int ur, int l, int r, int rt)
{
if(ul <= l && ur >= r)
{
if(sum[rt] >= )
{
if('A' == op) sum[rt] &= val;
else if('X' == op) sum[rt] ^= val;
else if('O' == op) sum[rt] |= val;
return ;
}
}
pushDown(rt);
int m = (l + r) >> ;
if(ul <= m)
{
update(op, val, ul, ur, l, m, rt << );
}
if(ur > m)
{
update(op, val, ul, ur, m + , r, rt << | );
}
pushUp(rt);
} int query(int ql, int qr, int l, int r, int rt)
{
if(ql <= l && qr >= r)
{
if(sum[rt] >= )
{
return sum[rt] * (r - l + );
}
}
pushDown(rt);
int m = (l + r) >> ;
int ret = ;
if(ql <= m)
{
ret += query(ql, qr, l, m, rt << );
}
if(qr > m)
{
ret += query(ql, qr, m + , r, rt << | );
}
return ret;
} int main(int argc, char* argv[])
{
#ifdef __MYLOCAL
freopen("in.txt", "r", stdin);
#endif int t, n, m, a, b, c;
char oper[]; scanf("%d", &t);
while(t--)
{
scanf("%d%d", &n, &m);
memset(sum, -, sizeof(sum));
build(, n, );
while(m--)
{
scanf("%s", oper);
if('S' == oper[])
{
scanf("%d%d", &a, &b);
printf("%d\n", query(a + , b + , , n, ));
}
else
{
scanf("%d%d%d", &a, &b, &c);
update(oper[], a, b + , c + , , n, );
}
}
} return ;
}
F - Hua Rong Dao

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Submit Status
Appoint description: 
System Crawler  (2012-12-11)

Description

Cao Cao was hunted down by thousands of enemy soldiers when he escaped from Hua Rong Dao. Assuming Hua Rong Dao is a narrow aisle (one N*4 rectangle), while Cao Cao can be regarded as one 2*2 grid. Cross general can be regarded as one 1*2 grid.Vertical general can be regarded as one 2*1 grid. Soldiers can be regarded as one 1*1 grid. Now Hua Rong Dao is full of people, no grid is empty.

There is only one Cao Cao. The number of Cross general, vertical general, and soldier is not fixed. How many ways can all the people stand?

Input

There is a single integer T (T≤4) in the first line of the test data indicating that there are T test cases.

Then for each case, only one integer N (1≤N≤4) in a single line indicates the length of Hua Rong Dao.

Output

For each test case, print the number of ways all the people can stand in a single line.

Sample Input

2
1
2

Sample Output

0
18

Hint

 
#include<iostream>
#include<cstdio>
using namespace std; bool vis[][];
int N,ans; void dfs(int i,int j)
{
if(j>)
{
i++;j=;
if(i>N)
{
ans++;return ;
}
}
if(vis[i][j]) dfs(i,j+);
if(!vis[i][j])
{
vis[i][j]=true;dfs(i,j+);vis[i][j]=false;
}
if(!vis[i][j] && j+<= && !vis[i][j+])
{
vis[i][j]=vis[i][j+]=true;
dfs(i,j+);
vis[i][j]=vis[i][j+]=false;
}
if(!vis[i][j] && i+<=N && !vis[i+][j])
{
vis[i][j]=vis[i+][j]=true;
dfs(i,j+);
vis[i][j]=vis[i+][j]=false;
}
return ;
}
int main()
{
int T,i,j;
scanf("%d",&T);
while(T--)
{
scanf("%d",&N);
ans=;
for(i=;i<N;i++)
{
for(j=;j<;j++)
{
memset(vis,false,sizeof(vis));
vis[i][j]=vis[i][j+]=vis[i+][j]=vis[i+][j+]=true;
dfs(,);
}
}
printf("%d\n",ans);
}
return ;
}
I - Star

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Submit Status
Appoint description: 
System Crawler  (2013-10-19)

Description

Overpower often go to the playground with classmates. They play and chat on the playground. One day, there are a lot of stars in the sky. Suddenly, one of Overpower’s classmates ask him: “How many acute triangles whose inner angles are less than 90 degrees (regarding stars as points) can be found? Assuming all the stars are in the same plane”. Please help him to solve this problem.

Input

The first line of the input contains an integer T (T≤10), indicating the number of test cases.

For each test case:

The first line contains one integer n (1≤n≤100), the number of stars.

The next n lines each contains two integers x and y (0≤|x|, |y|≤1,000,000) indicate the points, all the points are distinct.

Output

For each test case, output an integer indicating the total number of different acute triangles.

Sample Input

1
3
0 0
10 0
5 1000

Sample Output

1
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std; typedef __int64 LL ;
struct Point {
LL x, y;
Point(LL x=, LL y=):x(x),y(y) { }
}p[]; typedef Point Vector; Vector operator + (const Vector& A, const Vector& B) { return Vector(A.x+B.x, A.y+B.y); }
Vector operator - (const Point& A, const Point& B) { return Vector(A.x-B.x, A.y-B.y); }
Vector operator * (const Vector& A, double p) { return Vector(A.x*p, A.y*p); }
double Dot(const Vector& A, const Vector& B) { return A.x*B.x + A.y*B.y; }
double Cross(const Vector& A, const Vector& B) { return A.x*B.y - A.y*B.x; }
double Length(const Vector& A) { return sqrt(Dot(A, A)); } Point read_point()
{
Point a;
scanf("%I64d %I64d",&a.x,&a.y);
return a;
} bool is_ok(int i,int j,int k)
{
bool flag=;
if(-Dot(p[j]-p[i],p[k]-p[i])>0.0000001) flag=;
if(-Dot(p[j]-p[k],p[i]-p[k])>0.0000001) flag=;
if(-Dot(p[i]-p[j],p[k]-p[j])>0.0000001) flag=;
return flag;
}
int main()
{
int T,i,n,j,k,ans;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(i=;i<n;i++) p[i]=read_point();
ans=;
for(i=;i<n;i++)
{
for(j=i+;j<n;j++)
{
for(k=j+;k<n;k++)
{
if(is_ok(i,j,k))
ans++;
}
}
}
printf("%d\n",ans);
}
return ;
}
 
J - Min Number

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Submit Status
Appoint description: 
System Crawler  (2013-05-11)

Description

Now you are given one non-negative integer n in 10-base notation, it will only contain digits ('0'-'9'). You are allowed to choose 2 integers i and j, such that: i!=j, 1≤i<j≤|n|, here |n| means the length of n’s 10-base notation. Then we can swap n[i] and n[j].

For example, n=9012, we choose i=1, j=3, then we swap n[1] and n[3], then we get 1092, which is smaller than the original n.

Now you are allowed to operate at most M times, so what is the smallest number you can get after the operation(s)?

Please note that in this problem, leading zero is not allowed!

Input

The first line of the input contains an integer T (T≤100), indicating the number of test cases.

Then T cases, for any case, only 2 integers n and M (0≤n<10^1000, 0≤M≤100) in a single line.

Output

For each test case, output the minimum number we can get after no more than M operations.

Sample Input

3
9012 0
9012 1
9012 2

Sample Output

9012
1092
1029

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std; int len,findex;
char s[]; struct node
{
char ch;
int x;
}t; void find_min1()
{
t.ch='';t.x=len;
for(int j=len-;j>findex;j--)
{
if(s[j]<s[findex] && s[j]<=t.ch)
{
t.ch=s[j];
t.x=j;
}
}
} void find_min2()
{
t.ch='';t.x=len;
for(int j=len-;j>findex;j--)
{
if(s[j]<s[findex] && s[j]<=t.ch && s[j]>'')
{
t.ch=s[j];
t.x=j;
}
}
} void Swap(int i,int j)
{
char ch=s[i];
s[i]=s[j];s[j]=ch;
} int main()
{
int T,n,i;
scanf("%d",&T);
while(T--)
{
scanf("%s %d",s,&n);
len=strlen(s);
findex=;
for(i=;i<n;)
{
if(findex==len-) break;
find_min1();
if(findex== && t.ch=='') find_min2();
if(t.x==len)
{
findex++;
continue;
}
else
{
Swap(findex,t.x);
findex++;i++;
}
}
printf("%s\n",s);
}
return ;
}

20140323组队赛 2012福建省第三届ACM省赛题目的更多相关文章

  1. [2012山东省第三届ACM大学生程序设计竞赛]——n a^o7 !

    n a^o7 ! 题目:http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2413 Time Lim ...

  2. Sdut 2409 The Best Seat in ACM Contest(山东省第三届ACM省赛 H 题)(模拟)

    题目描述 Cainiao is a university student who loves ACM contest very much. It is a festival for him once ...

  3. [2012山东省第三届ACM大学生程序设计竞赛]——Mine Number

    Mine Number 题目:http://acm.sdut.edu.cn/sdutoj/problem.php? action=showproblem&problemid=2410 Time ...

  4. 山东省第三届ACM省赛

    Solved ID PID Title Accepted Submit   A 2407 Impasse (+) 0 0   B 2415 Chess 0 0   C 2414 An interest ...

  5. Sdut 2416 Fruit Ninja II(山东省第三届ACM省赛 J 题)(解析几何)

    Time Limit: 5000MS Memory limit: 65536K 题目描述 Haveyou ever played a popular game named "Fruit Ni ...

  6. sdut2408 pick apples (贪心+背包)山东省第三届ACM省赛

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/svitter/article/details/24642587 本文出自:http://blog.c ...

  7. 2012-2014 三年浙江 acm 省赛 题目 分类

    The 9th Zhejiang Provincial Collegiate Programming Contest A    Taxi Fare    25.57% (166/649)     (水 ...

  8. [原]sdut2624 Contest Print Server (大水+大坑)山东省第四届ACM省赛

    本文出自:http://blog.csdn.net/svitter 原题:http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&am ...

  9. [2012山东ACM省赛] Pick apples (贪心,完全背包,枚举)

    Pick apples Time Limit: 1000MS Memory limit: 165536K 题目描述 Once ago, there is a mystery yard which on ...

随机推荐

  1. 利用Vue.js实现登录/登出以及JWT认证

    JSON Web Token 入门教程:http://www.ruanyifeng.com/blog/2018/07/json_web_token-tutorial.html 后端代码地址:https ...

  2. Luogu P2073 送花

    权值线段树的模板题 然而AC后才发现,可以用\(\tt{set}\)水过-- 权值线段树类似于用线段树来实现平衡树的一些操作,代码实现还是比较方便的 #include<iostream> ...

  3. Objective-C实现一个简单的栈

    栈作为一种数据结构,是一种只能在一端进行插入和删除操作的特殊线性表.它按照先进后出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后一个数据被第一个读出 ...

  4. STL 之 sort 函数使用方法

    关于Sort Sort函数是C++ STL(Standard Template Library / 标准函数库) <algorithm>头文件中的一个排序函数,作用是将一系列数进行排序,因 ...

  5. linux中vim永久显示行号、开启语法高亮

    vim ~/.vimrc 进入insert模式,在最后加二行 syntax on set nu! 保存收工. 设置用视图模式的缩进为4个空格 set smartindent set tabstop=4 ...

  6. Android内核编译步骤

    android_4.0.4_tq210$ source build/envsetup.shandroid_4.0.4_tq210$ lunch 5/android_4.0.4_tq210$ make ...

  7. Linux学习-透过 systemctl 管理服务

    透过 systemctl 管理单一服务 (service unit) 的启动/开机启动与观察状态 一般来说,服务的启动有两个阶段,一 个是『开机的时候设定要不要启动这个服务』, 以及『你现在要不要启动 ...

  8. [python] 求大神解释下 面向对象中方法和属性

    面向对象中 类方法 实例方法 类属性 实例属性该如何理解呢?

  9. webdriver高级应用- 禁止Chrome浏览器的PDF和Flash插件

    #encoding=utf-8 from selenium import webdriver # 导入Options类 from selenium.webdriver.chrome.options i ...

  10. day04_01 知识回顾、算术运算符

    ","和"+"的区别 除法运算,整除//,别名"地板除" 取余数 2**10 2的10次方 指数运算 指数运算符优先级要比乘法要高,所以先算 ...