BZOJ4006 [JLOI2015]管道连接
裸的状压DP
令$f_S$表示包含颜色集合S的最小斯坦纳生成森林的值,于是有:
$$f_S=\min\{f_S,f_s+f_{S-s}|s\subset S\}$$
然后嘛。。。还是裸的斯坦纳树搞搞。。。又是个状压【摔!
貌似会TLE的说【额。。。
然后PoPoQQQ大爷分析了一番,说,大概1E的复杂度,不会T!
好,那就不会好了!(也太不求上进了吧)
/**************************************************************
Problem: 4006
User: rausen
Language: C++
Result: Accepted
Time:7272 ms
Memory:5160 kb
****************************************************************/ #include <cstdio>
#include <cstring>
#include <algorithm> using namespace std;
const int M = 3e3 + ;
const int N = 1e3 + ;
const int K = ;
const int Sz_q = N * ;
const int inf = 0x3f3f3f3f; inline int read(); struct edge {
int next, to, v;
edge(int _n = , int _t = , int _v = ) : next(_n), to(_t), v(_v) {}
} e[M << ]; struct point {
int c, w; inline void get() {
c = read(), w = read();
} inline bool operator < (const point &p) const {
return c < p.c;
}
} p[K]; int n, m, k, c, cnt;
int first[N], tot;
int f[][N], g[];
int l, r, q[Sz_q], v[N]; inline void Add_Edges(int x, int y, int z) {
e[++tot] = edge(first[x], y, z), first[x] = tot;
e[++tot] = edge(first[y], x, z), first[y] = tot;
} #define y e[x].to
void spfa(int *dis) {
static int x, p;
while (l != (r + ) % Sz_q) {
p = q[l], v[p] = , ++l %= Sz_q;
for (x = first[p]; x; x = e[x].next)
if (dis[p] + e[x].v < dis[y]) {
dis[y] = dis[p] + e[x].v;
if (!v[y]) {
v[y] = ;
if (dis[y] < dis[q[l]]) q[(l += Sz_q - ) %= Sz_q] = y;
else q[++r %= Sz_q] = y;
}
}
}
}
#undef y int work() {
static int S, s, i, res;
for (S = ; S < << cnt; ++S) {
for (i = ; i <= n; ++i) {
for (s = S & (S - ); s; (--s) &= S)
f[S][i] = min(f[S][i], f[s][i] + f[S ^ s][i]);
if (f[S][i] != inf) q[++r %= Sz_q] = i;
}
spfa(f[S]);
}
for (res = inf, i = ; i <= n; ++i)
res = min(res, f[( << cnt) - ][i]);
return res;
} int main() {
int i, x, y, z, S, s, nowc;
n = read(), m = read(), k = read();
for (i = ; i <= m; ++i) {
x = read(), y = read(), z = read();
Add_Edges(x, y, z);
}
for (i = ; i <= k; ++i) p[i].get();
sort(p + , p + k + );
for (nowc = -, c = , i = ; i <= k; ++i) {
if (p[i].c != nowc) nowc = p[i].c, ++c;
p[i].c = c;
} memset(g, 0x3f, sizeof(g));
for (S = ; S < << c; ++S) {
for (cnt = , i = ; i <= k; ++i)
if (S & ( << p[i].c - )) ++cnt;
memset(f, 0x3f, sizeof(f[][]) * N * ( << cnt));
for (cnt = , i = ; i <= k; ++i)
if (S & ( << p[i].c - )) f[ << cnt++][p[i].w] = ;
g[S] = work();
}
for (S = ; S < << c; ++S)
for (s = S & (S - ); s; (--s) &= S)
g[S] = min(g[S], g[s] + g[S ^ s]);
printf("%d\n", g[( << c) - ]);
return ;
} inline int read() {
static int x;
static char ch;
x = , ch = getchar();
while (ch < '' || '' < ch)
ch = getchar();
while ('' <= ch && ch <= '') {
x = x * + ch - '';
ch = getchar();
}
return x;
}
BZOJ4006 [JLOI2015]管道连接的更多相关文章
- BZOJ4006 JLOI2015 管道连接(斯坦纳树生成森林)
4006: [JLOI2015]管道连接 Time Limit: 30 Sec Memory Limit: 128 MB Description 小铭铭最近进入了某情报部门,该部门正在被如何建立安全的 ...
- [BZOJ4006][JLOI2015]管道连接 状压dp+斯坦纳树
4006: [JLOI2015]管道连接 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1020 Solved: 552[Submit][Statu ...
- [bzoj4006][JLOI2015]管道连接_斯坦纳树_状压dp
管道连接 bzoj-4006 JLOI-2015 题目大意:给定一张$n$个节点$m$条边的带边权无向图.并且给定$p$个重要节点,每个重要节点都有一个颜色.求一个边权和最小的边集使得颜色相同的重要节 ...
- BZOJ4006: [JLOI2015]管道连接(斯坦纳树,状压DP)
Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1171 Solved: 639[Submit][Status][Discuss] Descripti ...
- BZOJ_4006_[JLOI2015]管道连接_斯坦纳树
BZOJ_4006_[JLOI2015]管道连接_斯坦纳树 题意: 小铭铭最近进入了某情报部门,该部门正在被如何建立安全的通道连接困扰. 该部门有 n 个情报站,用 1 到 n 的整数编号.给出 m ...
- luogu P3264 [JLOI2015]管道连接
LINK:管道连接 一张无向图 有P个关键点 其中有K个集合 各个集合要在图中形成联通块 边有边权 求最小代价. 其实还是生成树问题 某个点要和某个点要在生成树中 类似这个意思. 可以发现 是斯坦纳树 ...
- 【bzoj4006】[JLOI2015]管道连接 斯坦纳树+状压dp
题目描述 给出一张 $n$ 个点 $m$ 条边的无向图和 $p$ 个特殊点,每个特殊点有一个颜色.要求选出若干条边,使得颜色相同的特殊点在同一个连通块内.输出最小边权和. 输入 第一行包含三个整数 n ...
- 【bzoj4006】[JLOI2015]管道连接(斯坦纳树+dp)
题目链接 题意: 给出\(n\)个点,\(m\)条边,同时给出\(p\)个重要的点以及对应特征. 现在要选出一些边,问使得这\(p\)个所有特征相同的点相连,问最小代价. 思路: 斯坦纳树的应用场景一 ...
- [JLOI2015]管道连接
题目描述 小铭铭最近进入了某情报部门,该部门正在被如何建立安全的通道连接困扰.该部门有 n 个情报站,用 1 到 n 的整数编号.给出 m 对情报站 ui;vi 和费用 wi,表示情报站 ui 和 v ...
随机推荐
- SQL collate
摘自:http://www.cnblogs.com/window5549-accp/archive/2009/10/03/1577682.html 我们在create table时经常会碰到这样的语句 ...
- [转]产品需求文档(PRD)的写作
产品需求对产品研发而言非常重要,写不好需求,后面的一切工作流程与活动都会受到影响.转载一篇文章,关于产品需求文档写作方面的,如下: 本文摘自(一个挺棒的医学方面专家):http://www.cnblo ...
- jdk和eclipse位数不一致出错
32位的eclipse无法打开:找不64位jdk6的jvm.dll文件(64位的没有这个文件).网上说法可以通过设置eclipse初始化文件xxx.ini改变方式: 直接换成了同位数的了,没去试了.
- python paramiko模块SSH自动登录linux系统进行操作
1). Linux系统首先要开启SSH服务:service ssh status 如果没安装的话,则要:apt-get install openssh-server service ssh resta ...
- Linux系统负载排查
参考 http://www.ruanyifeng.com/blog/2011/07/linux_load_average_explained.html 在Linux系统中,我们一般使用uptime命 ...
- hibernate配置文件中的catalog属性
在hibernate表的映射文件中 <hibernate-mapping> <class name="com.sooyie.hibernate.orm.Link&qu ...
- Selected SVN connector library is not available or cannot be loaded
1.错误描述 The following data will be sent: ------ STATUS ------ pluginId org.eclipse.team.sv ...
- Node 写文件
在程序开发过程中会遇到很多自己认为是对的但实际运行出来并不是自己想的那样的,这个时候就可以把程序运行的比较关键点用文件的方式存储下来,然后分析 node 方式 var fs = require('fs ...
- EMV技术学习和研究(转)
刚开始学习EMV&PBOC,磕磕碰碰,感谢xuture的<EMV技术学习和研究>给了很大帮助,让我少走了很多弯路,也感谢广俊.surge.艾零.小SO.Spinach.龙行天下的帮 ...
- eclipse+adt+sdk开发环境搭配
1.开发环境配置 http://www.mamicode.com/info-detail-516839.html