1 一致收敛很重要, 但可惜的是很多时候不一致收敛. 比如 $$\bex f_n(x)=x^n\to f(x)=\sedd{\ba{ll} 0,&x\in [0,1)\\ 1,&x=1 \ea},\quad x\in [0,1]; \eex$$ 但 $f_n$ 在 $[0,1-\delta]$ 上一致收敛!

本节的内容就是把这种现象普适化.

2 (Egrov 定理) 设

(1) $mE<\infty$;

(2) $\ae$ 有限的可测函数列 $\sed{f_n}$ $\ae$ 收敛于 $\ae$ 有限的函数 $f$.  则 $$\bex \forall\ \delta>0,\ \exists\ E_\delta\subset E,\ mE_\delta<\delta,\st f_n\rightrightarrows f\mbox{ 于 }E\bs E_\delta\mbox{ 上}. \eex$$

证明: 作 $$\bex E_0=\cup_{n=0}^\infty E[|f_n|=+\infty]\cup E[|f|=+\infty], \eex$$

则 $mE_0=0$. 用 $E\bs E_0$ 替换 $E$, 不妨设 $$\bex f_n,f\mbox{ 是有限函数};\quad f_n\to f,\ae \mbox{ 于 }E. \eex$$

于是 $$\beex \bea &\quad 0=m\sez{\lim_{n\to\infty}|f_n-f|\neq 0\mbox{ 或极限不存在}}\\ &\quad\ \,=m\sex{\cup_{k=1}^\infty     \cap_{N=1}^\infty     \cup_{n=N}^\infty E\sez{|f_n-f|\geq \frac{1}{k}}}\\ &\ra \forall\ k\in\bbZ^+,\ m\sex{\cap_{N=1}^\infty     \cup_{n=N}^\infty E\sez{|f_n-f|\geq \frac{1}{k}}}=0\\ &\ra \forall\ k\in\bbZ^+,\ \lim_{N\to\infty} m\sex{\cup_{n=N}^\infty E\sez{|f_n-f|\geq\frac{1}{k}}}=0\\ &\ra \forall\ k\in\bbZ^+,\     \forall\ \delta>0,\ \exists\ N_k\in\bbZ^+,\ m\sex{\cup_{n=N_k}^\infty E\sez{|f_n-f|\geq \frac{1}{k}}}<\frac{\delta}{2^k}\\ &\ra \forall\ \delta>0,\ m\sex{\cup_{k=1}^\infty \cup_{n=N_k}^\infty E\sez{|f_n-f|\geq\frac{1}{k}}}<\sum_{k=1}^\infty \frac{\delta}{2^k}=\delta\\ &\ra E_\delta=\cap_{k=1}^\infty \cap_{n=N_k}^\infty E\sez{|f_n-f|<\frac{1}{k}}\mbox{ 为所求}. \eea \eeex$$

3 Egrov 定义的意义: $$\bex \ae\mbox{ 收敛}\ra \mbox{``基本上'' 一致收敛}. \eex$$

4 注记:

(1) $mE=+\infty$ 时, Egrov 定理不成立. 比如     $$\bex     f_n(x)=\chi_{[n,n+1]}(x),\quad x\in E=\bbR.     \eex$$

(2) Egrov 定理的逆定理在 $mE\leq+\infty$ 时成立. 这是作业.

5 Egrov 定理的推广: 设

(1) $mE<+\infty$;

(2) $\ae$ 有限的可测函数列 $\sed{f_n}$ $\ae$ 收敛于 $+\infty$.  则 $$\bex \forall\ \delta>0,\ \exists\ E_\delta\subset E,\ mE_\delta<\delta,\st f_n\rightrightarrows +\infty,\mbox{ 于 }E\bs E_\delta\mbox{ 上}. \eex$$

这是课堂练习.

6 作业: Page 94 T 7.

[实变函数]4.2 Egrov 定理的更多相关文章

  1. [实变函数]5.6 Lebesgue 积分的几何意义 $\bullet$ Fubini 定理

    1 本节推广数学分析中的 Fubini 定理. 为此, 先引入 (1)(从低到高) 对 $A\subset \bbR^p, B\subset\bbR^q$, $$\bex A\times B=\sed ...

  2. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  3. Mittag-Leffler定理,Weierstrass因子分解定理和插值定理

    Mittag-Leffler定理    设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列自然数$\{k_{n}\}$, ...

  4. 【转】Polya定理

    转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...

  5. hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)

    题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                  ...

  6. poj1006Biorhythms(同余定理)

    转自:http://blog.csdn.net/dongfengkuayue/article/details/6461298 本文转自head for better博客,版权归其所有,代码系本人自己编 ...

  7. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  8. 大组合数:Lucas定理

    最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...

  9. SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元

    [题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...

随机推荐

  1. 黑马程序员——JAVA基础之语法、命名规则

    ------- android培训.java培训.期待与您交流! ---------- 1.java语言组成:关键字,标识符,注释,常量和变量,运算符,语句,函数,数组. 2.java关键字:被Jav ...

  2. windows下多个python版本共存

    方法/步骤   首先当然是安装你需要的两个不同版本的python,这里我安装的是2.7和3.3的,两个版本安装顺序无所谓.   接下来就是检查环境变量,缺少的我们需要添加.先找到环境变量的位置.   ...

  3. treap树及相关算法

    #include "stdafx.h" #include <stdio.h> #include <stdlib.h> #include <string ...

  4. Python的numpy库下的几个小函数的用法

    numpy库是Python进行数据分析和矩阵运算的一个非常重要的库,可以说numpy让Python有了matlab的味道 本文主要介绍几个numpy库下的小函数. 1.mat函数 mat函数可以将目标 ...

  5. 对OCR文字识别软件的扫描选项怎么设置

    说到OCR文字识别软件,越来越多的人选择使用ABBYY FineReader识别和转换文档,然而并不是每个人都知道转换质量取决于源图像的质量和所选的扫描选项,今天就给大家普及一下这方面的知识. ABB ...

  6. IIS6下PHP环境的资源未找到(404)问题

    故障现象: 无法找到该页, 404错误

  7. 【转】ASP.NET服务器控件使用之MultiView和View

    MultiView 和 View 控件和制作出选项卡的效果,MultiView 控件是一组 View 控件的容器.使用它可定义一组 View 控件,其中每个 View 控件都包含子控件. 如果要切换视 ...

  8. matlab批量灰色预测

    没事玩了一下matlab 发现现在网上的代码都是一组数据预测 所以我就写个批量数据的预测 顺便学习下matlab ----------------------------------我是快乐的分割线- ...

  9. Jquery获得下拉框的值

    转自:http://blog.csdn.net/jing_xin/article/details/8007794 获取Select : 获取select 选中的 text : $("#ddl ...

  10. MySql远程连接无法打开解决办法

    1.改表法. 请使用mysql管理工具,如:SQLyog Enterprise 可能是你的帐号不允许从远程登陆,只能在localhost.这个时候只要在localhost的那台电脑使用mysql管理工 ...