POJ 3104 Drying(二分答案)
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 11128 | Accepted: 2865 |
Description
It is very hard to wash and especially to dry clothes in winter. But Jane is a very smart girl. She is not afraid of this boring process. Jane has decided to use a radiator to make drying faster. But the radiator is small, so it can hold only one thing at a time.
Jane wants to perform drying in the minimal possible time. She asked you to write a program that will calculate the minimal time for a given set of clothes.
There are n clothes Jane has just washed. Each of them took ai water during washing. Every minute the amount of water contained in each thing decreases by one (of course, only if the thing is not completely dry yet). When amount of water contained becomes zero the cloth becomes dry and is ready to be packed.
Every minute Jane can select one thing to dry on the radiator. The radiator is very hot, so the amount of water in this thing decreases by k this minute (but not less than zero — if the thing contains less than k water, the resulting amount of water will be zero).
The task is to minimize the total time of drying by means of using the radiator effectively. The drying process ends when all the clothes are dry.
Sample Input
sample input #1
3
2 3 9
5 sample input #2
3
2 3 6
5
Sample Output
sample output #1
3 sample output #2
2 题意: 有n件湿衣服, 现在要把它们烘干(或自然风干), 已知烘干机的效率是每分钟 k 的水分。 自然风干是每分钟 1 的水分。
求最短的烘干时间(整数)。
分析: 0 时间内一定不能烘干。 MAX(水分最多的自然风干用时) 的时间一定能烘干(因为不用烘干,也能风干) 假设 用时 mid 则:
如果a[i]<=mid自然风干就行啦, 如果 a[i]>mid 就要用到烘干机, 假设用 x分钟的烘干机, 则需要满足a[i]-k*x<=mid-x
得出x = ceil(a[i]-mid)/(k-1) 【其中ceil是向上取整的函数,包含在cmath头文件里】 得出各个衣服所需要的烘干时间x,
然后加起来等于res 如果res<mid 则减小mid(用二分法), 否则增大mid。直到求出正确答案。细节详见代码! 二分答案方法的要求:
《1》 能够确定出答案所在的范围。
《2》 答案有在范围内的单调性
《3》 答案是整数(或有一定的精度要求), 而不是十分精确的实数。
二分答案的时间复杂度是logN。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std; int n, a[], k;
bool check(int mid)
{
long long res = ;
for(int i=; i<n; i++)
{
if(a[i]>mid)
{
res+=(int)ceil((double)(a[i]-mid)/(k-));
}
}
return res<=mid;
} int main()
{
while(scanf("%d", &n)!=EOF)
{
int Max=;
for(int i=; i<n; i++)
{
scanf("%d", &a[i]);
if(a[i]>Max) Max=a[i];
}
scanf("%d", &k);
if(k==)
{
printf("%d\n", Max);
continue;
}
int left = , right = Max, mid;
while(right>=left)
{
mid = (right+left)>>;
if(check(mid)) right = mid-;
else left = mid+;
}
printf("%d\n", left);
}
return ;
}
POJ 3104 Drying(二分答案)的更多相关文章
- POJ 3104 Drying 二分
http://poj.org/problem?id=3104 题目大意: 有n件衣服,每件有ai的水,自然风干每分钟少1,而烘干每分钟少k.求所有弄干的最短时间. 思路: 注意烘干时候没有自然风干. ...
- POJ 3104 Drying [二分 有坑点 好题]
传送门 表示又是神题一道 Drying Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9327 Accepted: 23 ...
- POJ 3104 Drying (二分+精度)
题目链接:click here~~ [题目大意]: 题意:有一些衣服,每件衣服有一定水量,有一个烘干机,每次能够烘一件衣服,每分钟能够烘掉k单位水. 每件衣服没分钟能够自己主动蒸发掉一单位水, 用烘干 ...
- POJ 3104 Drying (经典)【二分答案】
<题目链接> 题目大意: 有一些衣服,每件衣服有一定水量,有一个烘干机,每次可以烘一件衣服,每分钟可以烘掉k滴水.每件衣服没分钟可以自动蒸发掉一滴水,用烘干机烘衣服时不蒸发.问最少需要多少 ...
- POJ 3122 Pie 二分答案
题意:给你n个派,每个派都是高为一的圆柱体,把它等分成f份,每份的最大体积是多少. 思路: 明显的二分答案题-- 注意π的取值- 3.14159265359 这样才能AC,,, //By Sirius ...
- POJ 3104 Drying(二分答案)
[题目链接] http://poj.org/problem?id=3104 [题目大意] 给出n件需要干燥的衣服,烘干机能够每秒干燥k水分, 不在烘干的衣服本身每秒能干燥1水分 求出最少需要干燥的时间 ...
- poj 3104 Drying(二分查找)
题目链接:http://poj.org/problem?id=3104 Drying Time Limit: 2000MS Memory Limit: 65536K Total Submissio ...
- POJ 3104 Drying(二分
Drying Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 22163 Accepted: 5611 Descripti ...
- poj 3104 Drying(二分搜索之最大化最小值)
Description It is very hard to wash and especially to dry clothes in winter. But Jane is a very smar ...
随机推荐
- win7 dos命令窗口内容显示不全解决办法--将命令执行结果输出到一个文件中
执行命令:命令 >>某某路径\文件全名
- flex mx组件和s组件的字体兼容性不一致
<?xml version="1.0" encoding="utf-8"?> <s:Application xmlns:fx="ht ...
- Caused by: javax.xml.bind.JAXBException: standardPremiumUpdateMessageDTO is not a valid property on
Caused by: javax.xml.bind.JAXBException: standardPremiumUpdateMessageDTO is not a valid property on ...
- Centos7 安装配置NFS
一.安装 NFS 服务器所需的软件包 # yum install -y nfs-utils 二.编辑exports文件 # vim /etc/exports /data/disk1/video *(a ...
- Mysql 如何做双机热备和负载均衡
MySQL数据库没有增量备份的机制,但它提供了一种主从备份的机制,就是把主数据库的所有的数据同时写到备份数据库中.实现MySQL数据库的热备份. 下面是具体的主从热备份的步骤:假设主服务器A(mast ...
- HDU 3853:LOOPS(概率DP)
http://acm.split.hdu.edu.cn/showproblem.php?pid=3853 LOOPS Problem Description Akemi Homura is a M ...
- setw和setfill控制输出间隔
在C++中,setw(int n)用来控制输出间隔.例如:cout<<'s'<<setw(8)<<'a'<<endl;则在屏幕显示s a //s与a之间 ...
- DAO模型设计实现数据的 增,删,改,查方法
连接数据库方法,及反射获取数据,以前的方法相同,测试类 是在DAO模型下建立的 ------------------------------------------------------------ ...
- Opencv中直线的表示方法
[blog算法原理]Opencv中直线的表示方法 一.问题的提出: 在实际项目编写过程中,需要对直线(Line)进行特定的处 ...
- C#常用扩展方法
/// <summary> /// 转换 /// </summary> public static class ConversionHelper { #region 数据格式转 ...