• aggregate(pipeline,options) 指定 group 的 keys, 通过操作符 $push/$addToSet/$sum 等实现简单的 reduce, 不支持函数/自定义变量
  • group({ key, reduce, initial [, keyf] [, cond] [, finalize] }) 支持函数(keyfmapReduce 的阉割版本
  • mapReduce 终极大杀器
  • count(query) too young too simple
  • distinct(field,query)

最后两个操作很简单, 这里主要比较前面 3 个操作

样本数据

  • created 时间戳(ms)
  • group 组别 [A-Z]
  • category 目录 C[1-10]
  • count
  • title 26 个字母随机组成
{'group': 'E', 'created': 1402764223433, 'count': 63, 'datetime': datetime.datetime(2014, 6, 15, 0, 43, 43, 433000), 'title': 'KNBVHICLGOUESDFYTJWRXMPZQA', 'category': 'C8'}
{'group': 'I', 'created': 1413086660063, 'count': 93, 'datetime': datetime.datetime(2014, 10, 12, 12, 4, 20, 62000), 'title': 'UJZXCIHBFKELPYVWGAQRMNOSDT', 'category': 'C10'}
{'group': 'H', 'created': 1440750343730, 'count': 41, 'datetime': datetime.datetime(2015, 8, 28, 16, 25, 43, 730000), 'title': 'HSDKQPFMNBJEGXYZARITCVOWLU', 'category': 'C1'}
{'group': 'S', 'created': 1437710373637, 'count': 14, 'datetime': datetime.datetime(2015, 7, 24, 11, 59, 33, 637000), 'title': 'ZFJITUDHMBRLGKNEWSCPXVOYQA', 'category': 'C10'}
{'group': 'Z', 'created': 1428307315436, 'count': 78, 'datetime': datetime.datetime(2015, 4, 6, 16, 1, 55, 436000), 'title': 'FUYXWOQZPTKMSCNGDHEJVBILAR', 'category': 'C5'}
{'group': 'R', 'created': 1402809274964, 'count': 74, 'datetime': datetime.datetime(2014, 6, 15, 13, 14, 34, 963000), 'title': 'JKZCMPIAONDTWRQLHGUEVSFXYB', 'category': 'C9'}
{'group': 'Y', 'created': 1400571321919, 'count': 66, 'datetime': datetime.datetime(2014, 5, 20, 15, 35, 21, 918000), 'title': 'KSPGZJDMHNUALCEWBYXVIQOTFR', 'category': 'C2'}
{'group': 'L', 'created': 1416562128208, 'count': 5, 'datetime': datetime.datetime(2014, 11, 21, 17, 28, 48, 207000), 'title': 'ZHDLBRMNPXEVAQKJYSITCFGWUO', 'category': 'C1'}
{'group': 'E', 'created': 1414057884852, 'count': 12, 'datetime': datetime.datetime(2014, 10, 23, 17, 51, 24, 851000), 'title': 'EBZKXDTOQSCYJAGFPVIHNRULMW', 'category': 'C3'}
{'group': 'L', 'created': 1418879346846, 'count': 67, 'datetime': datetime.datetime(2014, 12, 18, 13, 9, 6, 845000), 'title': 'DZMQRXYVHOJFUGENCASTLWBPKI', 'category': 'C3'}

aggregate

接受两个参数 pipeline/optionspipeline 是 array, 相同的 operator 可以多次使用

pipeline 支持的方法

  • $geoNear 不予测试
  • $group 指定 group 的 _id(key/keys) 和基于操作符($push/$sum/...) 的累加运算
  • $limit 限制输出
  • $match 输入过滤条件
  • $out 将输出结果保存到 collection
  • $project 修改数据流中的文档结构
  • $redact 是 $project/$match 功能的合并
  • $skip
  • $sort 对结果排序
  • $unwind 拆解数据

$group 允许用的累加操作符 $addToSet/$avg/$first/$last/$max/$min/$push/$sum
不被允许的累加操作符 $each...
$group 操作默认最多可以用 100MB RAM, 增加 allowDiskUse 可以让 $group 操作更多的数据

下面是一个揉进全部特性的用法

db.data.aggregate([
{$match: {}},
{$skip: 10}, // 跳过 collection 的前 10 行
// 选择需要的字段
{$project: {group: 1, datetime: 1, category: 1, count: 1}},
// 如果不选择 {count: 1} 最后的结果中 count_all/count_avg = 0
// {$project: {group: 1, datetime: 1, category: 1}},
{$redact: { // redact 简单用法 过滤 group != 'A' 的行
$cond: [{$eq: ["$group", "A"]}, "$$DESCEND", "$$PRUNE"]
}},
{$group: {
_id: {year: {$year: "$datetime"}, month: {$month: "$datetime"}, day: {$dayOfMonth: "$datetime"}},
group_unique: {$addToSet: "$group"},
category_first: {$first: "$category"},
category_last: {$last: "$category"},
count_all: {$sum: "$count"},
count_avg: {$avg: "$count"},
rows: {$sum: 1}
}},
// 拆分 group_unique 如果开启这个选项, 会导致 _id 重复而无法写入 out 指定的 collection, 除非再 $group 一次
// {$unwind: "$group_unique"},
// 只保留这两个字段
{$project: {group_unique: 1, rows: 1}},
// 结果按照 _id 排序
{$sort: {"_id": 1}},
// 只保留 50 条结果
// {$limit: 50},
// 结果另存
{$out: "data_agg_out"},
], {
explain: true,
allowDiskUse: true,
cursor: {batchSize: 0}
})
db.data_agg_out.find()
db.data_agg_out.aggregate([
{$group: {
_id: null,
rows: {$sum: '$rows'}
}}
])
db.data_agg_out.drop()
  • $match 聚合前数据筛选
  • $skip 跳过聚合前数据集的 n 行, 如果 {$skip: 10}, 最后 rows = 5000000 - 10
  • $project 之选择需要的字段, 除了 _id 之外其他的字段的值只能为 1
  • $redact 看了文档不明其实际使用场景, 这里只是简单筛选聚合前的数据
  • $group 指定各字段的累加方法
  • $unwind 拆分 array 字段的值, 这样会导致 _id 重复
  • $project 可重复使用多次 最后用来过滤想要存储的字段
  • $out 如果 $group/$project/$redact 的 _id 没有重复就不会报错
  • 以上方法中 $project/$redact/$group/$unwind 可以使用多次

group

group 比 aggregate 好的一个地方是 map/reduce 都支持用 function 定义, 下面是支持的选项

  • ns 如果用 db.runCommand({group: {}}) 方式调用, 需要 ns 指定 collection
  • cond 聚合前筛选
  • key 聚合的 key
  • initial 初始化 累加 结果
  • $reduce 接受 (curr, result) 参数, 将 curr 累加到 result
  • keyf 代替 key 用函数生成聚合用的主键
  • finalize 结果处理

需要保证输出结果小于 16MB 因为 group 没有提供转存选项

db.data.group({
cond: {'group': 'A'},
// key: {'group': 1, 'category': 1},
keyf: function(doc) {
var dt = new Date(doc.created);
// or
// var dt = doc.datetime;
return {
year: doc.datetime.getFullYear(),
month: doc.datetime.getMonth() + 1,
day: doc.datetime.getDate()
}
},
initial: {count: 0, category: []},
$reduce: function(curr, result) {
result.count += curr.count;
if (result.category.indexOf(curr.category) == -1) {
result.category.push(curr.category);
}
},
finalize: function(result) {
result.category = result.category.join();
}
})

如果要求聚合大量数据, 就需要用到 mapReduce

mapReduce

先看看它支持的特性/选项

  • query 聚合前筛选
  • sort 对聚合前的数据排序 用来优化 reduce
  • limit 限制进入 map 的数据
  • map(function) emit(key, value) 在函数中指定聚合的 K/V
  • reduce(function) 参数 (key, values) key 在 map 中定义了, values 是在这个 K 下的所有 V 数组
  • finalize 处理最后结果
  • out 结果转存 可以选择另外一个 db
  • scope 设置全局变量
  • jdMode(false) 是否(默认是)把 map/reduce 中间结果转为 BSON 格式, BSON 格式可以利用磁盘空间, 这样就可以处理大规模的数据集
  • verbose(true) 详细信息

如果设 jsMode 为 true 不进行 BSON 转换, 可以优化 reduce 的执行速度, 但是由于内存限制最大在 emit 数量小于 500,000 时使用

写 mapReduce 时需要注意

db.data.mapReduce(function() {
// var d = new Date(this.created);
var d = this.datetime;
var key = {
year: d.getFullYear(),
month: d.getMonth() + 1,
day: d.getDate(),
};
var value = {
count: this.count,
rows: 1,
groups: [this.group],
}
emit(key, value);
}, function(key, vals) {
var reducedVal = {
count: 0,
groups: [],
rows: 0,
};
for(var i = 0; i < vals.length; i++) {
var v = vals[i];
reducedVal.count += v.count;
reducedVal.rows += v.rows;
for(var j = 0; j < v.groups.length; j ++) {
if (reducedVal.groups.indexOf(v.groups[j]) == -1) {
reducedVal.groups.push(v.groups[j]);
}
}
}
return reducedVal;
}, {
query: {},
sort: {datetime: 1}, // 需要索引 否则结果返回空
limit: 50000,
finalize: function(key, reducedVal) {
reducedVal.avg = reducedVal.count / reducedVal.rows;
return reducedVal;
},
out: {
inline: 1,
// replace: "",
// merge: "",
// reduce: "",
},
scope: {},
jsMode: true
})

总结

method allowDiskUse out function
aggregate true pipeline/collection false
group false pipeline true
mapReduce jsMode pipeline/collection true
  • aggregate 基于累加操作的的聚合 可以重复利用 $project/$group 一层一层聚合数据, 可以用于大量数据(单输出结果小于 16MB) 不可用于分片数据
  • mapReduce 可以处理超大数据集 需要严格遵守 mapReduce 中的结构一致/幂等 写法, 可增量输出/合并, 见 out options
  • group RDB 中的 group by 简单需求可用(只有 inline 输出) 会产生 read lock
  • StackOverflow 中关于三者比较的解答

清理

# cleanup
client.drop_database(db)

样本数据生成

这里用 python3 + pandas 生成 500w 条样本数据

from datetime import date, datetime
import string
import pandas as pd
import numpy as np
from pymongo import MongoClient
from bson.objectid import ObjectId
client = MongoClient()
db = client[str(ObjectId())] # fill data
N = 10000 * 500
dr = pd.date_range('2014-01-01', '2015-12-31', freq='M')
t1, t2 = dr.to_period()[0].start_time.timestamp(), dr.to_period()[-1].end_time.timestamp()
docs = []
bulk_size = 10000
letters = string.ascii_letters[26:]
for t in np.random.randint(t1 * 1000, t2 * 1000, N):
docs.append({
'created': int(t),
'datetime': datetime.fromtimestamp(t / 1000),
'title': ''.join(np.random.permutation(list(letters))),
'group': np.random.choice(list(letters)),
'category': np.random.choice(['C%s' % (i + 1) for i in range(10)]),
'count': int(np.random.randint(0, 100)),
})
if len(docs) >= bulk_size:
db.data.insert(docs)
docs = []
if docs:
db.data.insert(docs)
for row in db.data.find(fields={'_id': 0}).limit(10):
print(row)

Published: February 02 2015

MongoDB Aggregate Methods(2) MonoDB 的 3 种聚合函数的更多相关文章

  1. mongoDB (mongoose、增删改查、聚合、索引、连接、备份与恢复、监控等等)

    MongoDB - 简介 官网:https://www.mongodb.com/ MongoDB 是一个基于分布式文件存储的数据库,由 C++ 语言编写,旨在为 WEB 应用提供可扩展的高性能数据存储 ...

  2. MongoDB 聚合函数

    概念 聚合函数是对一组值执行计算并返回单一的值 主要的聚合函数 count distinct Group MapReduce 1.count db.users.count() db.users.cou ...

  3. Mongodb学习笔记四(Mongodb聚合函数)

    第四章 Mongodb聚合函数 插入 测试数据 ;j<;j++){ for(var i=1;i<3;i++){ var person={ Name:"jack"+i, ...

  4. 在MongoDB中实现聚合函数 (转)

    随着组织产生的数据爆炸性增长,从GB到TB,从TB到PB,传统的数据库已经无法通过垂直扩展来管理如此之大数据.传统方法存储和处理数据的成本将会随着数据量增长而显著增加.这使得很多组织都在寻找一种经济的 ...

  5. MDX Step by Step 读书笔记(七) - Performing Aggregation 聚合函数之 Sum, Aggregate, Avg

    开篇介绍 SSAS 分析服务中记录了大量的聚合值,这些聚合值在 Cube 中实际上指的就是度量值.一个给定的度量值可能聚合了来自事实表中上千上万甚至百万条数据,因此在设计阶段我们所能看到的度量实际上就 ...

  6. 在MongoDB中实现聚合函数

    在MongoDB中实现聚合函数 随着组织产生的数据爆炸性增长,从GB到TB,从TB到PB,传统的数据库已经无法通过垂直扩展来管理如此之大数据.传统方法存储和处理数据的成本将会随着数据量增长而显著增加. ...

  7. django的聚合函数和aggregate、annotate方法使用

    支持聚合函数的方法: 提到聚合函数,首先我们要知道的就是这些聚合函数是不能在django中单独使用的,要想在django中使用这些聚合函数,就必须把这些聚合函数放到支持他们的方法内去执行.支持聚合函数 ...

  8. Mongodb聚合函数

    插入 测试数据 for(var j=1;j<3;j++){ for(var i=1;i<3;i++){ var person={ Name:"jack"+i, Age: ...

  9. MongoDB 聚合函数及排序

    聚合函数 最大值  $max db.mycol.aggregate([{$group : {_id : "$by_user", num_max : {$max: "$li ...

随机推荐

  1. hdu 3117 Fibonacci Numbers

    这道题其实也是水题来的,求Fibonacci数的前4位和后4位,在n==40这里分界开.后4位不难求,因为n达到了10^18的规模,所以只能用矩阵快速幂来求了,但在输出后4位的时候一定要注意前导0的处 ...

  2. Could not obtain connection metadata

    用hibernate连接数据库出现错误 2010-3-16 17:23:39, 093 [main] WARN [org.hibernate.cfg.SettingsFactory] - Could ...

  3. Lucene 基础理论 (zhuan)

    http://www.blogjava.net/hoojo/archive/2012/09/06/387140.html**************************************** ...

  4. Java JTable 表格 获取存储路径,文件名 ,导出excel表格

    在做计量泵上位机软件时,需要将下位机传上来的数据,存入MYSQL数据库,显示在java 上位机界面上,并能导出至电脑指定位置. 选择存储路径和文件名: // 处理另存文件的菜单 public void ...

  5. ltib学习抄录

    linux -- LTIB学习笔记 一 安装篇二 运行篇三 修改工具包 四 编译新的内核 ---------相关资料------------------------------------------ ...

  6. python语法笔记(二)

    1. 循环对象 循环对象是一类特殊的对象,它包含一个next()方法(在python3中是 __next__()方法),该方法的目的是进行到下一个结果,而在结束一系列结果之后,举出 StopItera ...

  7. javascript的语句和函数

    1.for-in语句:是一种精准的迭代语句,可以用来枚举对象的属性. 2.label语句:在代码中添加标签,以便将来使用,由break和continue语句调用. 3.with语句:将代码的作用域设置 ...

  8. static final的理解

    static: static静态,可以修饰类,成员变量,成员方法,代码块.static修饰的成员变量和方法独立于该类的任何对象,也就是被类的所有成员共享,这要这个类被加载,虚拟机就能根据类名在运行时数 ...

  9. Unity3D 5.1烘培 操作

    http://blog.csdn.net/asd237241291/article/details/48056575 原创文章如需转载请注明:转载自 脱莫柔Unity3D学习之旅 Unity3D引擎技 ...

  10. ASP.NET中EVAL用法大全

    <%# Bind("Subject") %> //绑定字段<%# Container.DataItemIndex + 1%> //实现自动编号<%# ...